The oppr R package a decision support tool for prioritizing conservation projects. Prioritizations can be developed by maximizing expected feature richness, expected phylogenetic diversity, the number of features that meet persistence targets, or identifying a set of projects that meet persistence targets for minimal cost. Constraints (e.g. lock in specific actions) and feature weights can also be specified to further customize prioritizations. After defining a project prioritization problem, solutions can be obtained using exact algorithms, heuristic algorithms, or random processes. In particular, it is recommended to install the 'Gurobi' optimizer (available from https://www.gurobi.com) because it can identify optimal solutions very quickly. Finally, methods are provided for comparing different prioritizations and evaluating their benefits.

Installation

To make the most of this package, the ggtree and gurobi R packages will need to be installed. Since the ggtree package is exclusively available at Bioconductor---and is not available on The Comprehensive R Archive Network---please execute the following command to install it: source("https://bioconductor.org/biocLite.R");biocLite("ggtree"). If the installation process fails, please consult the package's online documentation. To install the gurobi package, the Gurobi optimization suite will first need to be installed (see https://support.gurobi.com/hc/en-us/articles/4534161999889-How-do-I-install-Gurobi-Optimizer for instructions). Although Gurobi is a commercial software, academics can obtain a special license for no cost. After installing the Gurobi optimization suite, the gurobi package can then be installed (see https://www.gurobi.com/documentation/current/refman/r_ins_the_r_package.html for instructions).

See also

Please refer to the package vignette for more information and worked examples. This can be accessed using the code vignette("oppr").

Author

Maintainer: Jeffrey O Hanson jeffrey.hanson@uqconnect.edu.au (ORCID)

Authors:

Examples

# load data
data(sim_projects, sim_features, sim_actions)

# print project data
print(sim_projects)
#> # A tibble: 6 × 13
#>   name           success     F1     F2      F3     F4     F5 F1_action F2_action
#>   <chr>            <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl> <lgl>     <lgl>    
#> 1 F1_project       0.919  0.791 NA     NA      NA     NA     TRUE      FALSE    
#> 2 F2_project       0.923 NA      0.888 NA      NA     NA     FALSE     TRUE     
#> 3 F3_project       0.829 NA     NA      0.502  NA     NA     FALSE     FALSE    
#> 4 F4_project       0.848 NA     NA     NA       0.690 NA     FALSE     FALSE    
#> 5 F5_project       0.814 NA     NA     NA      NA      0.617 FALSE     FALSE    
#> 6 baseline_proj…   1      0.298  0.250  0.0865  0.249  0.182 FALSE     FALSE    
#> # ℹ 4 more variables: F3_action <lgl>, F4_action <lgl>, F5_action <lgl>,
#> #   baseline_action <lgl>

# print action data
print(sim_features)
#> # A tibble: 5 × 2
#>   name  weight
#>   <chr>  <dbl>
#> 1 F1     0.211
#> 2 F2     0.211
#> 3 F3     0.221
#> 4 F4     0.630
#> 5 F5     1.59 

# print feature data
print(sim_actions)
#> # A tibble: 6 × 4
#>   name             cost locked_in locked_out
#>   <chr>           <dbl> <lgl>     <lgl>     
#> 1 F1_action        94.4 FALSE     FALSE     
#> 2 F2_action       101.  FALSE     FALSE     
#> 3 F3_action       103.  TRUE      FALSE     
#> 4 F4_action        99.2 FALSE     FALSE     
#> 5 F5_action        99.9 FALSE     TRUE      
#> 6 baseline_action   0   FALSE     FALSE     

# build problem
p <- problem(sim_projects, sim_actions, sim_features,
             "name", "success", "name", "cost", "name") %>%
     add_max_richness_objective(budget = 400) %>%
     add_feature_weights("weight") %>%
     add_binary_decisions()

# print problem
print(p)
#> Project Prioritization Problem
#>   actions          F1_action, F2_action, F3_action, ... (6 actions)
#>   projects         F1_project, F2_project, F3_project, ... (6 projects)
#>   features         F1, F2, F3, ... (5 features)
#>   action costs:    min: 0, max: 103.22583
#>   project success: min: 0.81379, max: 1
#>   objective:       Maximum richness objective [budget (400)]
#>   targets:         none
#>   weights:         min: 0.21136, max: 1.59167
#>   decisions        Binary decision 
#>   constraints:     <none>
#>   solver:          default

# \dontrun{
# solve problem
s <- solve(p)
#> Set parameter Username
#> Set parameter TimeLimit to value 2147483647
#> Set parameter MIPGap to value 0
#> Set parameter NumericFocus to value 3
#> Set parameter Presolve to value 2
#> Set parameter Threads to value 1
#> Set parameter PoolSolutions to value 1
#> Set parameter PoolSearchMode to value 2
#> Academic license - for non-commercial use only - expires 2025-04-21
#> Gurobi Optimizer version 11.0.2 build v11.0.2rc0 (linux64 - "Ubuntu 22.04.4 LTS")
#> 
#> CPU model: 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz, instruction set [SSE2|AVX|AVX2|AVX512]
#> Thread count: 4 physical cores, 8 logical processors, using up to 1 threads
#> 
#> Optimize a model with 47 rows, 47 columns and 102 nonzeros
#> Model fingerprint: 0xa33f6587
#> Variable types: 0 continuous, 42 integer (42 binary)
#> Semi-Variable types: 5 continuous, 0 integer
#> Coefficient statistics:
#>   Matrix range     [9e-02, 1e+02]
#>   Objective range  [2e-01, 2e+00]
#>   Bounds range     [1e+00, 1e+00]
#>   RHS range        [1e+00, 4e+02]
#> Found heuristic solution: objective 0.6654645
#> Presolve removed 16 rows and 12 columns
#> Presolve time: 0.00s
#> Presolved: 31 rows, 35 columns, 64 nonzeros
#> Variable types: 0 continuous, 35 integer (35 binary)
#> Root relaxation presolved: 31 rows, 35 columns, 64 nonzeros
#> 
#> 
#> Root relaxation: objective 1.749045e+00, 11 iterations, 0.00 seconds (0.00 work units)
#> 
#>     Nodes    |    Current Node    |     Objective Bounds      |     Work
#>  Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time
#> 
#> *    0     0               0       1.7490448    1.74904  0.00%     -    0s
#> 
#> Explored 1 nodes (11 simplex iterations) in 0.00 seconds (0.00 work units)
#> Thread count was 1 (of 8 available processors)
#> 
#> Solution count 1: 1.74904 
#> No other solutions better than 1.74904
#> 
#> Optimal solution found (tolerance 0.00e+00)
#> Best objective 1.749044775334e+00, best bound 1.749044775334e+00, gap 0.0000%

# print output
print(s)
#> # A tibble: 1 × 21
#>   solution status    obj  cost F1_action F2_action F3_action F4_action F5_action
#>      <int> <chr>   <dbl> <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
#> 1        1 OPTIMAL  1.75  395.         1         1         0         1         1
#> # ℹ 12 more variables: baseline_action <dbl>, F1_project <dbl>,
#> #   F2_project <dbl>, F3_project <dbl>, F4_project <dbl>, F5_project <dbl>,
#> #   baseline_project <dbl>, F1 <dbl>, F2 <dbl>, F3 <dbl>, F4 <dbl>, F5 <dbl>

# print which actions are funded in the solution
s[, sim_actions$name, drop = FALSE]
#> # A tibble: 1 × 6
#>   F1_action F2_action F3_action F4_action F5_action baseline_action
#>       <dbl>     <dbl>     <dbl>     <dbl>     <dbl>           <dbl>
#> 1         1         1         0         1         1               1

# print the expected probability of persistence for each feature
# if the solution were implemented
s[, sim_features$name, drop = FALSE]
#> # A tibble: 1 × 5
#>      F1    F2     F3    F4    F5
#>   <dbl> <dbl>  <dbl> <dbl> <dbl>
#> 1 0.808 0.865 0.0865 0.688 0.592

# visualize solution
plot(p, s)

# }