R/add_manual_locked_constraints.R
add_manual_locked_constraints.Rd
Add constraints to a project prioritization problem()
to ensure
that solutions fund (or do not fund) specific actions. This function offers
more fine-grained control than the add_locked_in_constraints()
and add_locked_out_constraints()
functions.
add_manual_locked_constraints(x, locked)
# S4 method for ProjectProblem,data.frame
add_manual_locked_constraints(x, locked)
# S4 method for ProjectProblem,tbl_df
add_manual_locked_constraints(x, locked)
ProjectProblem object.
data.frame
or tibble::tibble()
object. See
the Details section for more information.
ProjectProblem object with the constraints added to it.
The argument to locked
must contain the following fields
(columns):
"action"
character
action name.
"status"
numeric
values indicating if actions should
be funded (with a value of 1) or not (with a value of zero).
# load data
data(sim_projects, sim_features, sim_actions)
# create data frame with locked statuses
status <- data.frame(action = sim_actions$name[1:2],
status = c(0, 1))
# print locked statuses
print(status)
#> action status
#> 1 F1_action 0
#> 2 F2_action 1
# build problem with minimum set objective and targets that require each
# feature to have a 30% chance of persisting into the future
p <- problem(sim_projects, sim_actions, sim_features,
"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 500) %>%
add_manual_locked_constraints(status) %>%
add_binary_decisions()
# print problem
print(p)
#> Project Prioritization Problem
#> actions F1_action, F2_action, F3_action, ... (6 actions)
#> projects F1_project, F2_project, F3_project, ... (6 projects)
#> features F1, F2, F3, ... (5 features)
#> action costs: min: 0, max: 103.22583
#> project success: min: 0.81379, max: 1
#> objective: Maximum richness objective [budget (500)]
#> targets: none
#> weights: default
#> decisions Binary decision
#> constraints: <Manually locked actions [2 locked units]>
#> solver: default
# \dontrun{
# solve problem
s <- solve(p)
#> Set parameter Username
#> Set parameter TimeLimit to value 2147483647
#> Set parameter MIPGap to value 0
#> Set parameter NumericFocus to value 3
#> Set parameter Presolve to value 2
#> Set parameter Threads to value 1
#> Set parameter PoolSolutions to value 1
#> Set parameter PoolSearchMode to value 2
#> Academic license - for non-commercial use only - expires 2025-04-21
#> Gurobi Optimizer version 11.0.2 build v11.0.2rc0 (linux64 - "Ubuntu 22.04.4 LTS")
#>
#> CPU model: 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz, instruction set [SSE2|AVX|AVX2|AVX512]
#> Thread count: 4 physical cores, 8 logical processors, using up to 1 threads
#>
#> Optimize a model with 47 rows, 47 columns and 102 nonzeros
#> Model fingerprint: 0x54473ab0
#> Variable types: 0 continuous, 42 integer (42 binary)
#> Semi-Variable types: 5 continuous, 0 integer
#> Coefficient statistics:
#> Matrix range [9e-02, 1e+02]
#> Objective range [1e+00, 1e+00]
#> Bounds range [1e+00, 1e+00]
#> RHS range [1e+00, 5e+02]
#> Found heuristic solution: objective 1.4456093
#> Presolve removed 24 rows and 20 columns
#> Presolve time: 0.00s
#> Presolved: 23 rows, 27 columns, 46 nonzeros
#> Variable types: 0 continuous, 27 integer (27 binary)
#> Found heuristic solution: objective 2.0605492
#> Root relaxation presolved: 23 rows, 27 columns, 46 nonzeros
#>
#>
#> Root relaxation: objective 2.910246e+00, 7 iterations, 0.00 seconds (0.00 work units)
#>
#> Nodes | Current Node | Objective Bounds | Work
#> Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
#>
#> * 0 0 0 2.9102457 2.91025 0.00% - 0s
#>
#> Explored 1 nodes (7 simplex iterations) in 0.00 seconds (0.00 work units)
#> Thread count was 1 (of 8 available processors)
#>
#> Solution count 1: 2.91025
#> No other solutions better than 2.91025
#>
#> Optimal solution found (tolerance 0.00e+00)
#> Best objective 2.910245655750e+00, best bound 2.910245655750e+00, gap 0.0000%
# print solution
print(s)
#> # A tibble: 1 × 21
#> solution status obj cost F1_action F2_action F3_action F4_action F5_action
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 OPTIMAL 2.91 403. 0 1 1 1 1
#> # ℹ 12 more variables: baseline_action <dbl>, F1_project <dbl>,
#> # F2_project <dbl>, F3_project <dbl>, F4_project <dbl>, F5_project <dbl>,
#> # baseline_project <dbl>, F1 <dbl>, F2 <dbl>, F3 <dbl>, F4 <dbl>, F5 <dbl>
# }