Create prior probability matrix for the value of information analysis.
Usage
prior_probability_matrix(
site_data,
feature_data,
site_detection_columns,
site_n_surveys_columns,
site_probability_columns,
feature_survey_sensitivity_column,
feature_survey_specificity_column,
feature_model_sensitivity_column,
feature_model_specificity_column
)Arguments
- site_data
sf::sf()object with site data.- feature_data
base::data.frame()object with feature data.- site_detection_columns
characternames ofnumericcolumns in the argument tosite_datathat contain the proportion of surveys conducted within each site that detected each feature. Each column should correspond to a different feature, and contain a proportion value (between zero and one). If a site has not previously been surveyed, a value of zero should be used.- site_n_surveys_columns
characternames ofnumericcolumns in the argument tosite_datathat contain the total number of surveys conducted for each each feature within each site. Each column should correspond to a different feature, and contain a non-negative integer number (e.g. 0, 1, 2, 3). If a site has not previously been surveyed, a value of zero should be used.- site_probability_columns
characternames ofnumericcolumns in the argument tosite_datathat contain modeled probabilities of occupancy for each feature in each site. Each column should correspond to a different feature, and contain probability data (values between zero and one). No missing (NA) values are permitted in these columns.- feature_survey_sensitivity_column
charactername of the column in the argument tofeature_datathat contains probability of future surveys correctly detecting a presence of each feature in a given site (i.e. the sensitivity of the survey methodology). This column should havenumericvalues that are between zero and one. No missing (NA) values are permitted in this column.- feature_survey_specificity_column
charactername of the column in the argument tofeature_datathat contains probability of future surveys correctly detecting an absence of each feature in a given site (i.e. the specificity of the survey methodology). This column should havenumericvalues that are between zero and one. No missing (NA) values are permitted in this column.- feature_model_sensitivity_column
charactername of the column in the argument tofeature_datathat contains probability of the initial models correctly predicting a presence of each feature in a given site (i.e. the sensitivity of the models). This column should havenumericvalues that are between zero and one. No missing (NA) values are permitted in this column. This should ideally be calculated usingfit_xgb_occupancy_models()orfit_hglm_occupancy_models().- feature_model_specificity_column
charactername of the column in the argument tofeature_datathat contains probability of the initial models correctly predicting an absence of each feature in a given site (i.e. the specificity of the models). This column should havenumericvalues that are between zero and one. No missing (NA) values are permitted in this column. This should ideally be calculated usingfit_xgb_occupancy_models()orfit_hglm_occupancy_models().
Value
A matrix object containing the prior probabilities of each
feature occupying each site. Each row corresponds to a different
feature and each column corresponds to a different site.
Examples
# set seeds for reproducibility
set.seed(123)
# load example site data
data(sim_sites)
print(sim_sites)
#> Simple feature collection with 6 features and 13 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 0.02541313 ymin: 0.07851093 xmax: 0.9888107 ymax: 0.717068
#> CRS: NA
#> # A tibble: 6 × 14
#> survey_cost management_cost f1 f2 f3 n1 n2 n3 e1 e2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 19 99 0 0 0 0 0 0 1.13 0.535
#> 2 22 87 0 1 0.25 4 4 4 -1.37 -1.45
#> 3 13 94 1 1 0 1 1 1 0.155 -0.867
#> 4 19 61 0 0 0 0 0 0 -0.792 1.32
#> 5 9 105 0 0 0 0 0 0 -0.194 0.238
#> 6 12 136 0 0 0 0 0 0 1.07 0.220
#> # ℹ 4 more variables: p1 <dbl>, p2 <dbl>, p3 <dbl>, geometry <POINT>
# load example feature data
data(sim_features)
print(sim_features)
#> # A tibble: 3 × 7
#> name survey survey_sensitivity survey_specificity model_sensitivity
#> <chr> <lgl> <dbl> <dbl> <dbl>
#> 1 f1 TRUE 0.951 0.854 0.711
#> 2 f2 TRUE 0.990 0.832 0.722
#> 3 f3 TRUE 0.986 0.808 0.772
#> # ℹ 2 more variables: model_specificity <dbl>, target <dbl>
# calculate prior probability matrix
prior_matrix <- prior_probability_matrix(
sim_sites, sim_features,
c("f1", "f2", "f3"), c("n1", "n2", "n3"), c("p1", "p2", "p3"),
"survey_sensitivity", "survey_specificity",
"model_sensitivity", "model_specificity")
# preview prior probability matrix
print(prior_matrix)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> f1 0.8173204 1.079836e-05 0.8673022 0.2554465 0.2554465 0.8173204
#> f2 0.7883133 9.991649e-01 0.8546773 0.2567227 0.2567227 0.7883133
#> f3 0.2077566 2.583338e-05 0.0168493 0.8563573 0.8563573 0.2077566