Create prior probability matrix for the value of information analysis.
Usage
prior_probability_matrix(
site_data,
feature_data,
site_detection_columns,
site_n_surveys_columns,
site_probability_columns,
feature_survey_sensitivity_column,
feature_survey_specificity_column,
feature_model_sensitivity_column,
feature_model_specificity_column
)
Arguments
- site_data
sf::sf()
object with site data.- feature_data
base::data.frame()
object with feature data.- site_detection_columns
character
names ofnumeric
columns in the argument tosite_data
that contain the proportion of surveys conducted within each site that detected each feature. Each column should correspond to a different feature, and contain a proportion value (between zero and one). If a site has not previously been surveyed, a value of zero should be used.- site_n_surveys_columns
character
names ofnumeric
columns in the argument tosite_data
that contain the total number of surveys conducted for each each feature within each site. Each column should correspond to a different feature, and contain a non-negative integer number (e.g. 0, 1, 2, 3). If a site has not previously been surveyed, a value of zero should be used.- site_probability_columns
character
names ofnumeric
columns in the argument tosite_data
that contain modeled probabilities of occupancy for each feature in each site. Each column should correspond to a different feature, and contain probability data (values between zero and one). No missing (NA
) values are permitted in these columns.- feature_survey_sensitivity_column
character
name of the column in the argument tofeature_data
that contains probability of future surveys correctly detecting a presence of each feature in a given site (i.e. the sensitivity of the survey methodology). This column should havenumeric
values that are between zero and one. No missing (NA
) values are permitted in this column.- feature_survey_specificity_column
character
name of the column in the argument tofeature_data
that contains probability of future surveys correctly detecting an absence of each feature in a given site (i.e. the specificity of the survey methodology). This column should havenumeric
values that are between zero and one. No missing (NA
) values are permitted in this column.- feature_model_sensitivity_column
character
name of the column in the argument tofeature_data
that contains probability of the initial models correctly predicting a presence of each feature in a given site (i.e. the sensitivity of the models). This column should havenumeric
values that are between zero and one. No missing (NA
) values are permitted in this column. This should ideally be calculated usingfit_xgb_occupancy_models()
orfit_hglm_occupancy_models()
.- feature_model_specificity_column
character
name of the column in the argument tofeature_data
that contains probability of the initial models correctly predicting an absence of each feature in a given site (i.e. the specificity of the models). This column should havenumeric
values that are between zero and one. No missing (NA
) values are permitted in this column. This should ideally be calculated usingfit_xgb_occupancy_models()
orfit_hglm_occupancy_models()
.
Value
A matrix
object containing the prior probabilities of each
feature occupying each site. Each row corresponds to a different
feature and each column corresponds to a different site.
Examples
# set seeds for reproducibility
set.seed(123)
# load example site data
data(sim_sites)
print(sim_sites)
#> Simple feature collection with 6 features and 13 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 0.02541313 ymin: 0.07851093 xmax: 0.9888107 ymax: 0.717068
#> CRS: NA
#> # A tibble: 6 × 14
#> survey_cost management_cost f1 f2 f3 n1 n2 n3 e1 e2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 19 99 0 0 0 0 0 0 1.13 0.535
#> 2 22 87 0 1 0.25 4 4 4 -1.37 -1.45
#> 3 13 94 1 1 0 1 1 1 0.155 -0.867
#> 4 19 61 0 0 0 0 0 0 -0.792 1.32
#> 5 9 105 0 0 0 0 0 0 -0.194 0.238
#> 6 12 136 0 0 0 0 0 0 1.07 0.220
#> # ℹ 4 more variables: p1 <dbl>, p2 <dbl>, p3 <dbl>, geometry <POINT>
# load example feature data
data(sim_features)
print(sim_features)
#> # A tibble: 3 × 7
#> name survey survey_sensitivity survey_specificity model_sensitivity
#> <chr> <lgl> <dbl> <dbl> <dbl>
#> 1 f1 TRUE 0.951 0.854 0.711
#> 2 f2 TRUE 0.990 0.832 0.722
#> 3 f3 TRUE 0.986 0.808 0.772
#> # ℹ 2 more variables: model_specificity <dbl>, target <dbl>
# calculate prior probability matrix
prior_matrix <- prior_probability_matrix(
sim_sites, sim_features,
c("f1", "f2", "f3"), c("n1", "n2", "n3"), c("p1", "p2", "p3"),
"survey_sensitivity", "survey_specificity",
"model_sensitivity", "model_specificity")
# preview prior probability matrix
print(prior_matrix)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> f1 0.8173204 1.079836e-05 0.8673022 0.2554465 0.2554465 0.8173204
#> f2 0.7883133 9.991649e-01 0.8546773 0.2567227 0.2567227 0.7883133
#> f3 0.2077566 2.583338e-05 0.0168493 0.8563573 0.8563573 0.2077566