These functions are used to create parameters that consist of a single
number. Parameters have a name, a value, a defined range of acceptable
values, a default value, a class, and a shiny::shiny() widget for
modifying them. If values are supplied to a parameter that are unacceptable
then an error is thrown.
proportion_parameter(name, value)
binary_parameter(name, value)
integer_parameter(
name,
value,
lower_limit = as.integer(-.Machine$integer.max),
upper_limit = as.integer(.Machine$integer.max)
)
numeric_parameter(
name,
value,
lower_limit = .Machine$double.xmin,
upper_limit = .Machine$double.xmax
)character name of parameter.
integer or double value depending on the
parameter.
integer or double value representing
the smallest acceptable value for value. Defaults to
the smallest possible number on the system.
integer or double value representing
the largest acceptable value for value. Defaults to
the largest possible number on the system.
ScalarParameter object.
Below is a list of parameter generating functions and a brief description of each.
A parameter that is a double and bounded
between zero and one.
A parameter that is a integer.
A parameter that is a double.
A parameter that is restricted to integer
values of zero or one.
# proportion parameter
p1 <- proportion_parameter('prop', 0.5) # create new object
print(p1) # print it
#> prop (0.5)
p1$get() # get value
#> [1] 0.5
p1$id # get id
#> id: c051eb8a-e6ce-403e-938c-12497077c925
p1$validate(5) # check if 5 is a validate input
p1$validate(0.1) # check if 0.1 is a validate input
p1$set(0.1) # change value to 0.1
print(p1)
#> prop (0.1)
# binary parameter
p2 <- binary_parameter('bin', 0) # create new object
print(p2) # print it
#> bin (0)
p2$get() # get value
#> [1] 0
p2$id # get id
#> id: 398dbe0b-36a3-407d-8f80-54d475522eb0
p2$validate(5) # check if 5 is a validate input
p2$validate(1L) # check if 1L is a validate input
p2$set(1L) # change value to 1L
print(p1) # print it again
#> prop (0.1)
# integer parameter
p3 <- integer_parameter('int', 5L) # create new object
print(p3) # print it
#> int (5)
p3$get() # get value
#> [1] 5
p3$id # get id
#> id: 216eb750-ec2c-465c-b5f7-0dbbb11176a4
p3$validate(5.6) # check if 5.6 is a validate input
p3$validate(2L) # check if 2L is a validate input
p3$set(2L) # change value to 2L
print(p3) # print it again
#> int (2)
# numeric parameter
p4 <- numeric_parameter('dbl', -7.6) # create new object
print(p4) # print it
#> dbl (-7.6)
p4$get() # get value
#> [1] -7.6
p4$id # get id
#> id: d6335e98-8ff0-408b-97d3-71bd48a5b442
p4$validate(NA) # check if NA is a validate input
p4$validate(8.9) # check if 8.9 is a validate input
p4$set(8.9) # change value to 8.9
print(p4) # print it again
#> dbl (8.9)
# numeric parameter with lower bounds
p5 <- numeric_parameter('bdbl', 6, lower_limit=0) # create new object
print(p5) # print it
#> bdbl (6)
p5$get() # get value
#> [1] 6
p5$id # get id
#> id: 1b266d40-2462-43bb-8156-fbe3b439fec3
p5$validate(-10) # check if -10 is a validate input
p5$validate(90) # check if 90 is a validate input
p5$set(90) # change value to 8.9
print(p5) # print it again
#> bdbl (90)