PRIORITIZR WORKSHOP MANUAL

Jeffrey O. Hanson
2019-10-10

Contents

1 Welcome!

2 Introduction

3 Data

4 Gap analysis

5 Spatial prioritizations
6 Answers

7 Acknowledgements

8 Session information

9 References

11

27

35

95

61

63

65

CONTENTS

Chapter 1

Welcome!

Here you will find the manual for the prioritizr module of the Spatial Conservation Prioritiza-
tion: Concepts, Methods and Application workshop held at CIBIO-InBIO, Vairao, Portugal.
Before you arrive at the workshop, you should make sure that you have correctly
set up your computer for the workshop and you have downloaded the data from
here. We cannot guarantee a reliable Internet connection during the workshop,
and so you may be unable to complete the workshop if you have not set up your
computer beforehand.

https://cibio.up.pt/workshops--courses/details/advanced-course-spatial-conservation-prioritization-
https://cibio.up.pt/workshops--courses/details/advanced-course-spatial-conservation-prioritization-
https://github.com/prioritizr/cibio-workshop/raw/master/data.zip
https://github.com/prioritizr/cibio-workshop/raw/master/data.zip

CHAPTER 1. WELCOME!

Chapter 2

Introduction

2.1 Overview

The aim of this workshop is to help you get started with using the prioritizr R package for
systematic conservation planning. It is not designed to give you a comprehensive overview
and you will not become an expert after completing this workshop. Instead, we want to help
you understand the core principles of conservation planning and guide you through some of
the common tasks involved with developing prioritizations. In other words, we want to give
you the knowledge base and confidence needed to start applying systematic conservation
planning to your own work.

You are not alone in this workshop. If you are having trouble, please put your hand up
and one of the instructors will help you as soon as they can. You can also ask the people
sitting next to you for help too. Most importantly, the code needed to answer the
questions in this workshop are almost always located in the same section as the
question. So if you are stuck, try rereading the example code and see if you can
modify it to answer the question. Please note that the first thing an instructor will ask
you will be “what have you tried so far?”. We can’t help you if you haven'’t tried anything.

2.2 Setting up your computer

You will need to have both R and RStudio installed on your computer to complete this
workshop. Although it is not imperative that you have the latest version of RStudio installed,
you will need the latest version of R installed (i.e. version 3.6.1). Please note that
you might need administrative permissions to install these programs. After installing them,
you will also need to install some R packages too.

https://www.r-project.org
https://www.rstudio.com/

8 CHAPTER 2. INTRODUCTION

221 R

The R statistical computing environment can be downloaded from the Comprehensive R
Archive Network (CRAN). Specifically, you can download the latest version of R (version
3.6.1) from here: https://cloud.r-project.org. Please note that you will need to download
the correct file for your operating system (i.e. Linux, Mac OSX, Windows).

2.2.2 RStudio

RStudio is an integrated development environment (IDE). In other words, it is a program that
is designed to make your R programming experience more enjoyable. During this workshop,
you will interact with R through RStudio—meaning that you will open RStudio to code in R.
You can download the latest version of RStudio here: http://www.rstudio.com/download.
When you start RStudio, you will see two main parts of the interface:

[BON) ~/Documents/r4ds/data-analysis - RStudio

Ql-| - - * Addins - % data-analysis ~
Console ~/Documents/r4ds/data-analysis/ = Environment History =
> library(ggplot2) <4 [#ImportDataset ~ 3 List v | @&

> ggplot(mpg, aes(x = displ, y = hwy)) +
+ geom_point(aes(colour = class))
> |

"} Global Environment ~

Environment is empty

Files Plots Packages Help Viewer -]
= & zoom #Export~ @ % - | @&
L]
L]
40~
S, class
: © 2seater
o0
o [© compact
e &
30 gt T ® midsize
o o oo o -
= (XX J o0 o ® minivan
0008 0 oo [] L]
Spcans amm it S o e
L eoee o L]
eoe o ° @ subcompact
L] L]
20- . [e ® suv
L L] L]
e 000 (X J
L] @e @ 000 0 L]
] L L)
[] L_J L__ 1 J
L] L]
L]
Console Output s : ¢ &
displ

You can type R code into the Console and press the enter key to run code.

https://www.r-project.org
https://cloud.r-project.org
https://www.rstudio.com
http://www.rstudio.com/download

2.3. FURTHER READING 9

2.2.3 R packages

An R package is a collection of R code and documentation that can be installed to enhance
the standard R environment with additional functionality. Currently, there are over fifteen
thousand R packages available on CRAN. Each of these R packages are developed to per-
form a specific task, such as reading Excel spreadsheets, downloading satellite imagery data,
downloading and cleaning protected area data, or fitting environmental niche models. In
fact, R has such a diverse ecosystem of R packages, that the question is almost always not
“can I use R to ..7” but “what R package can I use to ..7”. During this workshop, we will
use several R packages. To install these R packages, please enter the code below in the
Console part of the RStudio interface and press enter. Note that you will require an Internet
connection and the installation process may take some time to complete.

install.packages(c("sf", "tidyverse", "sp", "rgeos", "rgdal", "raster",
"units", "prioritizr", "prioritizrdata", "Rsymphony",
"mapview", "assertthat", "velox", '"remotes",
"gridExtra", "BiocManager"))

BiocManager: :install("lpsymphony", version = "3.9")

2.3 Further reading

There is a wealth of resources available for learning how to use R. Although not required for
this workshop, I would highly recommend that you read R for Data Science by Garrett Grole-
mund and Hadley Wickham. This veritable trove of R goodness is freely available
online. If you spend a week going through this book then you will save months debugging
and rerunning incorrect code. I would urge any and all ecologists, especially those working
on Masters or PhD degrees, to read this book. I even bought this book as a Christmas
present for my sister—and, yes, she was happy to receive it! For intermediate users looking
to skill-up, I would recommend the The Art of R Programming: A Tour of Statistical Soft-
ware Design by Norman Matloff and Advanced R by Hadley Wickham. Finally, if you wish
to learn more about using R as a geospatial information system (GIS), I would recommend
Geocomputation with R by Robin Lovelace, Jakub Nowosad, and Jannes Muenchow which
is also freely available online. I also recommend Applied Spatial Data Analysis by Roger S.
Bivand, Edzer Pebesma, and Virgilio Gémez-Rubio too.

https://cran.r-project.org/web/packages/readxl/index.html
https://cran.r-project.org/web/packages/MODIStsp/index.html
https://cran.r-project.org/web/packages/wdpar/index.html
https://cran.r-project.org/web/packages/ENMeval/index.html
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
http://shop.oreilly.com/product/9781593273842.do
http://shop.oreilly.com/product/9781593273842.do
https://adv-r.hadley.nz/
https://geocompr.robinlovelace.net/
https://www.springer.com/gp/book/9781461476177
https://www.springer.com/gp/book/9781461476177

10

CHAPTER 2. INTRODUCTION

Chapter 3

Data

3.1 Starting out

We will start by opening RStudio. Ideally, you will have already installed both R and Rstudio
before the workshop. If you have not done this already, then please see the Setting up your
computer section. During this workshop, please do not copy and paste code from
the workshop manual into RStudio. Instead, please write it out yourself in an
R script. When programming, you will spend a lot of time fixing coding mistakes—that
is, debugging your code—so it is best to get used to making mistakes now when you have
people here to help you. You can create a new R script by clicking on File in the RStudio
menu bar, then New File, and then R Script.

Rt

Edit Code View Plots Session Build Debug Profile Tools Help

New File
New Project...

Open File...
Recent Files

Open Praject...
Open Project in New Session...
Recent Projects

Import Dataset

Save
Save As..
Save Al

Publish...
Print...

Close
Close Al
Close All Except Current

Close Project

Quit Session...

Ctrl+0

Ctrl+S

Ctrl+Alt+S

Ctrl+W

Ctrl+Shift+W

>

Ctrl+Alt+Shift+W

Ctrl+Q

R Script Ctrl+Shift+N

R Notebook

R Markdown...
Shiny Web App...
Plumber APL..

Text File
C++ File
Python Script
SQL Script
Stan File

D3 Script

R Sweave

R HTML

R Presentation

R Documentation

story Connections
it Dataset = | &

fent =

Environment s empty

ckages Help Viewer
iate

Description

Safe Password Entry for R, Git, and
SSH

assertthat
backports

4 base
binman
bitops
boot

<callr

caToals

class
classint

cli

Easy Pre and Post Assertions
Reimplementations of Functions
Introduced Since R-3.0.0

The R Base Package

4 Binary Download Manager
Bitwise Operations

Bootstrap Functions (Originally by
Angela Canty for 5)

Call R from R

Tools: moving window statistics,
GIF, Bases, ROC AUC, etc
Functions for Classification
Chaose Univariate Class Intervals
Helpers for Developing Command
Line Interfacas

=187

X project:

List ~

Version

11

0.20
113

352
011
10-6
13-20

311
11711

7.3-14
03-1
101

{Nore) =

X

=0

=0

11

12 CHAPTER 3. DATA

After creating a new script, you will notice that a new Source panel has appeared. In the
Source panel, you can type and edit code before you run it. You can run code in the Source
panel by placing the cursor (i.e. the blinking line) on the desired line of code and pressing
Control + Enter on your keyboard (or CMD + Enter if you are using an Apple computer).
You can save the code in the Source panel by pressing Control + s on your keyboard (or
CMD + s if you are using an Apple computer).

e i
File Edit Code View Plots Session Build Debug Profile Tools Help
O -%la-HP Go to file/function = Addins ~) project (None) ~
©7 Untitieal e[| | Environment History Connections =0
I [sourceonsave | Q / ~ +Run | " Source - 2 |4 | 77 Import Dataset ~ | & List ~ -
1 7} Global Enviranment v
nvironment is empty
Files Plots Packages Help Viewer =0
Bl install | @ upcate
Name Description Version
Source System Library
askpass Safe Password Entry for R, Git,and L1
11 | (Top Level) & R Script & 55
assertthat Easy Pre and Post Assertions 020
Conzoke | [t cne ot =0 backports Reimplementations of Functions 113
~f Introduced Since R-3.0.0
Plattorm: x8b_bd-wbd-mingws2/xbd (bd-bit) | @ base The R Base Package 150
® is free software and comes with ABSOLUTELY NO WARRANTY. binman A Binary Download Manager 011
you are welcome to redistribute it under certain conditions. bitops Bitwise Operations 10-6
Type 'license()' or 'licence()’ for distribution detrails. boot Bootstrap Functions (Originally by 13-20
R is a collaborative project with many contributors. Angelo Canty for 5)
Type "contributers()’ for more information and aallr Call R from R 311
‘citation()” on how te cite R or R packages in publications. caTools Tools: moving window statistics, 11711
GIF, Base6d, ROC AUC, etc
Type 'demo()’ for some demos, 'help()' for on-line help, or . et o Gl 13z
‘help.start()’ for an HTML browser interface to help. class unctions for Classification e
Type "q()' to quit R. dassint Choose Univariate Class Intervals 03-1
di Helpers for Developing Command 1.0.1
> A
Line Interfaces v

You can also make notes and write your answers to the workshop questions inside the R
script. When writing notes and answers, add a # symbol so that the text following the #
symbol is treated as a comment and not code. This means that you don’t have to worry
about highlighting specific parts of the script to avoid errors.

this i1s a comment and R will ignore this text <f you run <t
R will run the code below because it does not start with a # symbol

print("this is not a comment")

[1] "this is not a comment"

you can also add comments to the same line of R code too
print("this is also not a comment") # but this is a comment

[1] "this is also not a comment"

Remember to save your script regularly to ensure that you don’t lose anything
in the event that RStudio crashes (e.g. using Control + s or CMD + s)!

3.2. ATTACHING PACKAGES 13

3.2 Attaching packages

Now we will set up our R session for the workshop. Specifically, enter the following R code
to attach the R packages used in this workshop.

load packages
library(tidyverse)
library(prioritizr)
library(rgdal)
library(raster)
library(rgeos)
library(mapview)
library(units)
library(scales)
library(assertthat)
library(gridExtra)

You should have already downloaded the data for the prioritizr module of this workshop. If
you have not already done so, you can download it from here: https://github.com/prioritizr/
cibio-workshop/raw /master/data.zip. After downloading the data, you can unzip the data
into a new folder. Next, you will need to set the working directory to this new folder. To
achieve this, click on the Session button on the RStudio menu bar, then click Set Working
Directory, and then Choose Directory.

File Edit Code View Plots [Session| Build Debug Profile Tools Help

@ -loplar- New Session 1 project: (None) «
Console Terminal - Jobs Interrupt R (5] Environment History Connections =0
- » 2 - y -
TR import Dataset - | & st

B GlobalEnvironment -

R version 3.5.2 (2018-12-2
Copyright (C) 2018 The R F Restart R Ctrl +Shift+F10

platform: x86_64-w64-mingw

Set Working Directory ° To Source File Location Environment s er

R i5 free software and com To Files Pane Location

Su’are welone o radistr| Load Workspace
Type "license() o THcent gave Workspace As. Choose Directory.. Ctrl+Shift+H

R is a collaborative proje
Type “contributors()” for
“citation()" on hon to cit

Clear Workspace.

Quit Session Ctrl+Q

pe "demo()’ for some demos = 0
‘help.start()’ for an HTML browser interface to help.
Type 'q()" To quit R.

R version 3.5.2 (2018-12-20) -- "Eggshell Igloo” Fils Plots Packages Help Viewer =0
Copyright (C) 2018 The R Foundation for Statistical Computing &
platform: x85_64-w4-mingw32/x64 (64-bit) Jinstai | @ upcate
Nome Desaiption Version
R is free software and comes wiTth ABSOLUTELY NO WARRANTY. .
vou are welcome to redistribute it under certain conditions. System Library
Type 'Ticense()' or "Ticence()' for distribution details. askpass Safe Password Entry for R, Git, and SSH 11
R is a collaborative project with many contributors sssertthat Easy Pre and Post Assertions 020
Type ‘contributors()” for more information and backports Reimplementations of Functions Introduced 113
“citation()’ on how to cite R or R packages in publications. Since R-300
/1 base The R Base Package 352
Type 'demo()' for some demos, 'help()' for on-line help, or <
‘help.start()" for an WML browser interface To help. binman ABinary Download Manager 011
Type 'g()’ to quit R. bitops. Bitwise Operations 10-6
N boot Bootstrap Functions (Originally by Angelo Canty 13-20
for S)
callr Call R from R 311
caTools Taols: moving window statistics, GIF, Basef4, 11711
ROCAUC, ete.
class. Functions for Classification 73-14
classlnt Choose Univariate Class Intervals 031
di Helpers for Developing Command Line 101
Interfaces
clipr Read and Write from the System Clipboard 050
clisymbols Unicade Symbols at the R Prompt 120
cluster “Finding Groups in Data": Cluster Analysis. 2071
Extended Rousseeuw et al.
codetools Code Analysis Tools for R 0.2-15
compiler The R Compiler Package 352 o

https://github.com/prioritizr/cibio-workshop/raw/master/data.zip
https://github.com/prioritizr/cibio-workshop/raw/master/data.zip

14 CHAPTER 3. DATA

Now navigate to the folder where you unzipped the data and select Open. You can verify
that you have correctly set the working directory using the following R code. You should
see the output TRUE in the Console panel.

file.exists("data/pu.shp")

[1] TRUE

3.3 Data import

Now that we have downloaded the dataset, we will need to import it into our R session.
Specifically, this data was obtained from the “Introduction to Marxan” course and was origi-
nally a subset of a larger spatial prioritization project performed under contract to Australia’s
Department of Environment and Water Resources. It contains vector-based planning unit
data (pu.shp) and the raster-based data describing the spatial distributions of 62 vegetation
classes (vegetation.tif) in Tasmania, Australia. Please note this dataset is only provided
for teaching purposes and should not be used for any real-world conservation planning. We
can import the data into our R session using the following code.

import planning unit data
pu_data <- readOGR("data/pu.shp")

OGR data source with driver: ESRI Shapefile

Source: "/home/travis/build/prioritizr/cibio-workshop/data/pu.shp", layer:

with 1130 features
It has 5 fields

format columns in planning unit data
pu_data$locked _in <- as.logical(pu_data$locked_in)
pu_data$locked_out <- as.logical(pu_data$locked_out)

import wvegetation data
veg_data <- stack('"data/vegetation.tif")

Ilpull

3.4. PLANNING UNIT DATA 15

3.4 Planning unit data

The planning unit data contains spatial data describing the geometry for each planning
unit and attribute data with information about each planning unit (e.g. cost values). Let’s
investigate the pu_data object. The attribute data contains 5 columns with contain the
following information:

e id: unique identifiers for each planning unit

 cost: acquisition cost values for each planning unit (millions of Australian dollars).

« status: status information for each planning unit (only relevant with Marxan)

e locked_in: logical values (i.e. TRUE/FALSE) indicating if planning units are covered
by protected areas or not.

» locked_out: logical values (i.e. TRUE/FALSE) indicating if planning units cannot be
managed as a protected area because they contain are too degraded.

print a short summary of the data
print (pu_data)

class : SpatialPolygonsDataFrame

features : 1130

extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)

crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellr
variables : b5

names : id, cost, status, locked_in, locked_out

min values : 1, 0.192488262910798, 0, 0, 0

max values : 1130, 61.9272727272727, 2, 1, 1

plot the planning unit data
plot(pu_data)

16 CHAPTER 3. DATA

plot an interactive map of the planning unit data
mapview(pu_data)

print the structure of object
str(pu_data, max.level = 2)

Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots

#i# ..Q@ data :'data.frame': 1130 obs. of b5 variables:

..0@ polygons :List of 1130

..0 plotOrder : int [1:1130] 217 973 506 645 705 975 253 271 704 889 ...
..Q@ bbox : num [1:2, 1:2] 1080623 -4840595 1399989 -4497092

.. ..— attr(x, "dimnames")=List of 2

#i# ..Q@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

print the class of the object
class(pu_data)

[1] "SpatialPolygonsDataFrame"
attr(,"package")

3.4. PLANNING UNIT DATA
[1] "Sp"

print the slots of the object
slotNames (pu_data)

[1] "data" "polygons" "plotOrder" "bbox"

print the geometry for the 80th planning untt
pu_data@polygons[[80]]

An object of class "Polygons"
Slot "Polygons":

[[1]]

An object of class "Polygon"
Slot "labpt":

[1] 1289177 -4558185

##

Slot "area':

[1] 1060361

##

Slot "hole":

[1] FALSE

##

Slot "ringDir":

[1] 1

H##

Slot "coords":

[,1] [,2]

[1,] 1288123 -4558431
[2,] 1287877 -4558005
[3,] 1288177 -4558019
[4,] 1288278 -4558054
[5,] 1288834 -4558038
[6,] 1289026 -4557929
[7,] 1289168 -4557928
[8,] 1289350 -4557790
[9,] 1289517 -4557744
[10,] 1289618 -4557773
[11,] 1289836 -4557965
[12,] 1290000 -4557984
[13,] 1290025 -4557987
[14,] 1290144 -4558168
[15,] 1290460 -4558431
[16,] 1288123 -4558431

17

"proj4string"

18

##
#it
#it

Slot "plotOrder":

[1] 1
##
Slot "labpt":

[1] 1289177 -4558185

##

Slot "ID":
[1] "79"
##

Slot "area':
[1] 1060361

print the coordinate reference system

print (pu_data@projéstring)

CRS arguments:

CHAPTER 3. DATA

+proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0
+ellps=GRS80 +units=m +no_defs

print number of planning units (geometries) in the data

nrow(pu_data)

[1] 1130

print the first stz rows in the attridbute data

head (pu_data@data)

id cost status locked_in locked_out
0 1 60.24638 0 FALSE TRUE
1 2 19.86301 0 FALSE FALSE
2 3 59.68051 0 FALSE TRUE
3 4 32.41614 0 FALSE FALSE
4 5 26.17706 0 FALSE FALSE
5 6 51.26218 0 FALSE TRUE

print the first siz values in the cost column of the attribute data

head (pu_data$cost)

[1] 60.24638 19.86301 59.68051 32.41614 26.17706 51.26218

3.4. PLANNING UNIT DATA 19

print the highest cost wvalue
max (pu_data$cost)

[1] 61.92727

print the smallest cost walue
min(pu_data$cost)

[1] 0.1924883

print average cost walue
mean (pu_data$cost)

[1] 25.13536

plot a map of the planning unit cost data
spplot(pu_data, "cost")

plot an interactive map of the planning unit cost data
mapview(pu_data, zcol = "cost")

Now, you can try and answer some questions about the planning unit data.

2. What is the highest cost value?

o 1. How many planning units are in the planning unit data?
3. How many planning units are covered by the protected areas (hint: sum(x))?

20

10.

11.

CHAPTER 3. DATA

. What is the proportion of the planning units that are covered by the protected

areas (hint: mean(x))?

How many planning units are highly degraded (hint: sum(x))?

What is the proportion of planning units are highly degraded (hint: mean(x))?
Can you verify that all values in the locked_in and locked_out columns are
zero or one (hint: min(x) and max(x))?.

Can you verify that none of the planning units are missing cost values (hint:
all(is.finite(x)))?.

Can you very that none of the planning units have duplicated identifiers? (hint:
sum(duplicated(x)))?

Is there a spatial pattern in the planning unit cost values (hint: use spplot to
make a map).

Is there a spatial pattern in where most planning units are covered by protected
areas (hint: use spplot to make a map).

3.5. VEGETATION DATA 21

3.5 Vegetation data

The vegetation data describes the spatial distribution of 62 vegetation classes in the study
area. This data is in a raster format and so the data are organized using a square grid
comprising square grid cells that are each the same size. In our case, the raster data contains
multiple layers (also called “bands”) and each layer has corresponds to a spatial grid with
exactly the same area and has exactly the same dimensionality (i.e. number of rows, columns,
and cells). In this dataset, there are 62 different regular spatial grids layered on top of each
other — with each layer corresponding to a different vegetation class — and each of these
layers contains a grid with 343 rows, 320 columns, and 109760 cells. Within each layer, each
cell corresponds to a 1 by 1 km square. The values associated with each grid cell indicate
the (one) presence or (zero) absence of a given vegetation class in the cell.

— Raster dataset

Raster Bands

Let’s explore the vegetation data.

print a short summary of the data
print(veg_data)

class : RasterStack
dimensions : 343, 320, 109760, 62 (nrow, ncol, ncell, nlayers)
resolution : 1000, 1000 (x, y)

extent : 1080496, 1400496, -4841217, -4498217 (xmin, xmax, ymin, ymax)

crs : +tproj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps
names : vegetation.1l, vegetation.2, vegetation.3, vegetation.4, vegetation.5, ve
min values : 0, 0, 0, 0,

max values : 1, 1, 1, 1,

22 CHAPTER 3. DATA

plot a map of the 36th wvegetation class
plot(veg_datal[[36]])

o
o
o
o
o
n
bl
. 1.0
S 0.8
S
0] 0.6
(o]
¥ 0.4
0.2
o | 0.0
o
o
S |
o
@ oy
' I I I I

1000000 1200000 1400000

plot an interactive map of the 36th wvegetation class
mapview(veg_datal[[36]])

print number of rows in the data
nrow(veg_data)

[1] 343

print number of columns <in the data
ncol(veg_data)

[1] 320

3.5. VEGETATION DATA 23

print number of cells in the data
ncell(veg_data)

[1] 109760

print number of layers in the data
nlayers(veg_data)

[1] 62

print resolution on the z-azis
xres(veg_data)

[1] 1000

print resolution on the y-azis
yres(veg_data)

[1] 1000

print spatial extent of the grid, i.e. coordinates for corners
extent (veg_data)

class : Extent
xmin : 1080496
xmax : 1400496
ymin 1 —4841217
ymax : —4498217

print the coordinate reference system
print(veg_data@crs)

CRS arguments:
+proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0
+ellps=GRS80 +units=m +no_defs

print a summary of the first layer in the stack
print(veg datal[[1]])

class : Rasterlayer
band : 1 (of 62 bands)

24 CHAPTER 3. DATA

dimensions : 343, 320, 109760 (nrow, ncol, ncell)
resolution : 1000, 1000 (x, y)

extent : 1080496, 1400496, -4841217, -4498217 (xmin, xmax, ymin, ymax)

crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps
source : /home/travis/build/prioritizr/cibio-workshop/data/vegetation.tif

names : vegetation.l

values : 0, 1 (min, max)

print the value in the 800th cell in the first layer of the stack
print (veg_data[[1]] [800])

#i#
0

print the value of the cell located in the 30th row and the 60th column of
the first layer
print(veg_datal[[1]] [30, 60])

##
0

calculate the sum of all the cell wvalues in the first layer
cellStats(veg_datal[[1]], "sum"

[1] 36

calculate the mazimum value of all the cell walues in the first layer
cellStats(veg_datal[[1]], "max"

[1] 1

calculate the minimum value of all the cell wvalues in the first layer
cellStats(veg_datal[[1]], "min"

[1] 0

calculate the mean wvalue of all the cell walues in the first layer
cellStats(veg_datal[[1]], "mean"

[1] 0.0003279883

3.5. VEGETATION DATA 25

calculate the mazimum value in each layer
as_tibble(data.frame(max = cellStats(veg_data, "max")))

A tibble: 62 x 1

H## max
<dbl>
1 1
2 1
3 1
##t 4 1
b 1
6 1
7 1
8 1
9 1
10 1
... with 52 more rows

Now, you can try and answer some questions about the vegetation data.

1. What part of the study area is the 51st vegetation class found in (hint: make a
o map)?
2. What proportion of cells contain the 12th vegetation class?
Which vegetation class is present in the greatest number of cells?
4. The planning unit data and the vegetation data should have the same coordinate
reference system. Can you check if they are the same?

o

26

CHAPTER 3. DATA

Chapter 4

Gap analysis

4.1 Introduction

Before we begin to prioritize areas for protected area establishment, we should first under-
stand how well existing protected areas are conserving our biodiversity features (i.e. native
vegetation classes in Tasmania, Australia). This step is critical: we cannot develop plans
to improve conservation of biodiversity if we don’t understand how well existing policies
are currently conserving biodiversity! To achieve this, we can perform a “gap analysis”. A
gap analysis involves calculating how well each of our biodiversity features (i.e. vegetation
classes in this exercise) are represented (covered) by protected areas. Next, we compare
current representation by protected areas of each feature (e.g. 5% of their spatial distri-
bution covered by protected areas) to a target threshold (e.g. 20% of their spatial distri-
bution covered by protected areas). This target threshold denotes the minimum amount
(e.g. minimum proportion of spatial distribution) that we need of each feature to be rep-
resented in the protected area system. Ideally, targets should be based on an estimate of
how much area or habitat is needed for ecosystem function or species persistence. In prac-
tice, targets are generally set using simple rules of thumb (e.g. 10% or 20%), policy (17%;
https://www.cbd.int/sp/targets/rationale/target-11) or standard practices (e.g. setting tar-
gets for species based on geographic range size) [Butchart et al., 2015, Rodrigues et al.,
2004].

4.2 Feature abundance

Now we will perform some preliminary calculations to explore the data. First, we will
calculate how much of each vegetation feature occurs inside each planning unit (i.e. the
abundance of the features). To achieve this, we will use the problem function to create an
empty conservation planning problem that only contains the planning unit and biodiversity
data. We will then use the feature_abundances function to calculate the total amount of
each feature in each planning unit.

27

https://www.cbd.int/sp/targets/rationale/target-11

28 CHAPTER 4. GAP ANALYSIS

create prioritizr problem with only the data
pO0 <- problem(pu_data, veg _data, cost_column = "cost")

print empty problem,
we can see that only the cost and feature data are defined
print (p0)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)

cost: min: 0.19249, max: 61.92727

features: vegetation.1l, vegetation.2, vegetation.3, ... (62 features)
objective: none

targets: none

decisions: default

#Hit constraints: <none>

penalties: <none>

portfolio: default

solver: default

calculate amount of each feature im each planning unit
abundance_data <- feature_abundances(p0)

print abundance data
print (abundance_data)

A tibble: 62 x 3

feature absolute abundance relative_ abundance
<chr> <dbl> <dbl>
1 vegetation.l 33 1
2 vegetation.2 173 1
3 vegetation.3 24 1
4 vegetation.4 31 1
5 vegetation.b 23 1
6 vegetation.6 22 1
7 vegetation.7 15 1
8 vegetation.8 45 1
O vegetation.9 384 1
10 vegetation.10 14 1

... with 52 more rows

4.2. FEATURE ABUNDANCE 29

note that only the first ten rows are printed,

this is because the abundance_data object is a tibble (i.e. tbl_df) object
and not a standard data.frame object

print(class(abundance_data))

[1] "tbl_df" "tbl" "data.frame"

we can print all of the rows in abundance_data like this
print (abundance _data, n = Inf)

A tibble: 62 x 3

feature absolute_abundance relative_abundance
<chr> <dbl> <dbl>
1 vegetation.l 33 1
2 vegetation.2 173 1
3 vegetation.3 24 1
4 vegetation.4 31 1
5 vegetation.b 23 1
6 vegetation.6 22 1
7 vegetation.7 15 1
8 vegetation.8 45 1
O vegetation.9 384 1
10 vegetation.10 14 1
11 vegetation.11 39 1
12 vegetation.12 26 1
13 vegetation.13 20 1
14 vegetation.14 123 1
15 vegetation.15 18 1
16 vegetation.16 11 1
17 vegetation.17 24 1
18 vegetation.18 19 1
19 vegetation.19 24 1
20 vegetation.20 895 1
21 vegetation.21 258 1
22 vegetation.22 8 1
23 vegetation.23 10 1
24 vegetation.24 21 1
25 vegetation.25 13 1
26 vegetation.26 9 1
27 vegetation.27 15 1
28 vegetation.28 660 1
29 vegetation.29 30 1
30 vegetation.30 26 1

30

##
#it
#it
##
#i#
#i#
#it
#it
##
#i#t
#i#
##
#it
##
#it
#i#
##
#it
#it
##
#i#
##
#it
#it
##
#i#
#i#
#Hit
#it
##
#i#
##

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
.52

vegetation

vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61
62

52
30
312
36
173
714
26
17
18
28
59

80
139
40
25
24
224

41
223

0 N 01N

18

S

36

= O N

CHAPTER 4. GAP ANALYSIS

e e el e e T T S S e e e S e e L e e e e T

NaN
1

The abundance_data object contains three columns. The feature column contains the name
of each feature (derived from names (veg_data)), the absolute_abundance column contains
the total amount of each feature in all the planning units, and the relative_abundance
column contains the total amount of each feature in the planning units expressed as a pro-
portion of the total amount in the underlying raster data. Since all the raster cells containing
vegetation overlap with the planning units, all of the values in the relative_abundance col-
umn are equal to one (meaning 100%)—except for the 61st feature which has a value on NaN
because it does not occur in the study area at all (i.e. all of its raster values are zeros). Now
let’s add a new column with the feature abundances expressed in area units (i.e. km?).

4.2. FEATURE ABUNDANCE

add new column with feature abundances in km 2
abundance_data$absolute_abundance km2 <-
(abundance_data$absolute_abundance * prod(res(veg_data))) %>/

set_units(m~2) %>%

set_units(km~2)

print abundance data
print (abundance_data)

A tibble:

#i#
##
##
##
#it
#i#
##
##
##
##

©O© 00 NO O WN =

H H=
H* R
'_\
(@

Now let’s explore the abundance data.

calculate the average abundance of the features
mean (abundance data$absolute_abundance km2)

feature
<chr>

vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
vegetation.
#o# ...

with 52

62 x 4

31

absolute_abundance relative_abundan~ absolute_abundance_k~

© 00 NO O W N =

[
o

more Irows

86.67742 [km™2]

plot histogram of the features' abundances
hist (abundance_data$absolute_abundance_km2, main = "Feature abundances")

<dbl>
33
173
24
31
23
22
15
45
384
14

<dbl>

e e

[km~2]
33
173
24
31
23
22
15
45
384
14

32 CHAPTER 4. GAP ANALYSIS

Feature abundances

50

Frequency
20 40

10

o I N

I I I I I
0 200 400 600 800

$(abundance_data, absolute_abundance_km2) [km’]

find the abundance of the feature with the largest abundance
max (abundance_data$absolute_abundance km2)

895 [km~™2]

find the name of the feature with the largest abundance
abundance_data$feature[which.max (abundance_data$absolute_abundance km2)]

[1] "vegetation.20"

Now, try to answer the following questions.

What is the median abundance of the features (hint: median)?

What is the abundance of the feature with smallest abundance?

What is the name of the feature with smallest abundance?

What is the total abundance of all features in the planning units summed to-
gether?

5. How many features have a total abundance greater than 100 km™2 (hint:
sum(abundance_values > set_units(threshold value, km~2))?

> 80P =

4.3. FEATURE REPRESENTATION BY PROTECTED AREAS 33

4.3 Feature representation by protected areas

After calculating the total amount of each feature in the planning units (i.e. the features’

abundances), we will now calculate the amount of each feature in the planning units that
are covered by protected areas (i.e. feature representation by protected areas). We can
complete this task using the feature_representation function. This function requires (i)
a conservation problem object with the planning unit and biodiversity data and also (ii)
an object representing a solution to the problem (i.e an object in the same format as the
planning unit data with values indicating if the planning units are selected or not).

create column in planning unit data with binary values (zeros and ones)
indicating i1f a planning unit is covered by protected areas or not
pu_data$pa_status <- as.numeric(pu_data$locked_in)

calculate feature representation by protected areas
repr_data <- feature_representation(pO, pu_datal, "pa_status"])

print feature representation data
print (repr_data)

A tibble: 62 x 3

feature absolute_held relative_held
#i# <chr> <dbl> <dbl>
1 vegetation.1 1 0.0303
2 vegetation.2 14 0.0809
3 vegetation.3 2 0.0833
4 vegetation.4 1 0.0323
b vegetation.b 0 0

6 vegetation.6 0 0

7 vegetation.7 0 0

8 vegetation.8 6 0.133

O vegetation.9 20 0.0521
10 vegetation.10 0 0

... with 52 more rows

Similar to the abundance data before, the repr_data object contains three columns. The
feature column contains the name of each feature, the absolute_held column shows the
total amount of each feature held in the solution (i.e. the planning units covered by protected
areas), and the relative_held column shows the proportion of each feature held in the
solution (i.e. the proportion of each feature’s spatial distribution held in protected areas).
Since the absolute_held values correspond to the number of grid cells in the veg_data
object with overlap with protected areas, let’s convert them to area units (i.e. km?) so we
can report them.

34

add new column with the areas represented in km 2

repr_data$absolute_held_km2 <-

(repr_data$absolute_held * prod(res(veg _data))) %>’

set_units(m~2) %>%

set_units(km~2)

print representation data
print (repr_data)

A tibble:

#i#
##
##
##
#i#
#i#
##
##
##
##
#i#t
10

© 00 NO O W N =

#H H# ...

62 x 4

CHAPTER 4. GAP ANALYSIS

feature absolute_held relative_held absolute_held_km2
<chr> <dbl> <dbl> (km~2]
vegetation.1 1 0.0303 1
vegetation.2 14 0.0809 14
vegetation.3 2 0.0833 2
vegetation.4 1 0.0323 1
vegetation.b 0 0 0
vegetation.6 0 0 0
vegetation.7 0 0 0
vegetation.8 6 0.133 6
vegetation.9 20 0.0521 20
vegetation.10 0 0 0

with 52 more rows

Now let’s investigate how well the species are represented.

. What is the average proportion of the features held in protected areas (hint:

mean(x, na.rm = TRUE)?

. What is the average amount of land in km? that features are represented by

protected areas?

. What is the name of the feature with the greatest proportionate coverage by

protected areas?

. What is the name of the feature with the greatest area coverage by protected

areas?

. Do questions two and three have the same answer? Why could this be?
. Is there a relationship between the total abundance of a feature and how well it

is represented by protected areas (hint: plot(abundances ~ relative_held))?

. Are any features entirely missing from protected areas (hint: sum(x == 0))?
. If we set a target of 10% coverage by protected areas, how many features fail to

meet this target (hint: sum(relative_held >= target, na.rm = TRUE))?

. If we set a target of 20% coverage by protected areas, how many features fail to

meet this target?

Chapter 5

Spatial prioritizations

5.1 Introduction

Here we will develop prioritizations to identify priority areas for protected area establishment.
Its worth noting that prioritizr, Marxan, and Zonation are all decision support tools. This
means that they are designed to help you make decisions—they can’t make decisions for you.

5.2 Starting out simple

To start things off, let’s keep things simple. Let’s create a prioritization using the minimum
set formulation of the reserve selection problem. This formulation means that we want a
solution that will meet the targets for our biodiversity features for minimum cost. Here, we
will set 5% targets for each vegetation class and use the data in the cost column to specify
acquisition costs. Unlike Marxan, we do not have to calibrate species penalty factors (SPFs)
to ensure that our target are met—oprioritizr should always return solutions to minimum
set problems where all the targets are met. Although we strongly recommend using Gurobi
to solve problems (with add_gurobi_solver), we will use the Ipsymphony solver in this
workshop since it is easier to install. The Gurobi solver is much faster than the Ipsymphony
solver (see here for installation instructions).

print planning unit data
print(pu_data)

class : SpatialPolygonsDataFrame

features : 1130

extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)

crs : tproj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellp
variables : 6

35

https://prioritizr.net/
http://marxan.org/
https://www.helsinki.fi/en/researchgroups/digital-geography-lab/software-developed-in-cbig#section-52992
https://prioritizr.net/reference/add_min_set_objective.html
https://prioritizr.net/reference/add_min_set_objective.html
https://www.gurobi.com/
https://prioritizr.net/reference/add_gurobi_solver.html
https://prioritizr.net/reference/add_lsymphony_solver.html
https://prioritizr.net/articles/gurobi_installation.html

36

##
#it
#i#t

names
min values
max values

CHAPTER 5. SPATIAL PRIORITIZATIONS

id, cost, status, locked_in, locked_out, pa_status
1, 0.192488262910798, 0, 0, 0, 0
1130, 61.9272727272727, 2, 1, 1, 1

make prioritization problem

pl <- problem(pu_data, veg _data, cost_column = "cost") %>%
add_min_set_objective() %>%

add_relative_targets(0.05) %>% # 5/ representation targets
add_binary_decisions() %>%

add_lpsymphony_solver (verbose = FALSE)

print problem
print (pl)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)

##
#i#
#i#
##
##
##
#it
##
##
##

cost:
features:
objective:
targets:
decisions:
constraints:
penalties:
portfolio:
solver:

solve problem

s1

print solution,

<- solve(pl)

min: 0.19249, max: 61.92727

vegetation.l, vegetation.2, vegetation.3, ... (62 features)

Minimum set objective

Relative targets [targets (min: 0.05, max: 0.05)]

Binary decision

<none>

<none>

default

Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose

the solution_1 column contains the solution wvalues

indicating if a planning unit is (1) selected or (0) not
print(s1)

##
#it
#i#t
##
#i#
##
#it
#it

class
features
extent

crs
variables
names

min values
max values

: SpatialPolygonsDataFrame

1130
1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)

: +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellr
7

id, cost, status, locked_in, locked_out, pa_status, solu
1, 0.192488262910798, 0, 0, 0, 0,
1130, 61.9272727272727, 2, 1, 1, 1,

5.3. ADDING COMPLEXITY 37

calculate number of planning units selected in the prioritization
sum(s1$solution 1)

[1] 36

calculate total cost of the prioritization
sum(si$solution 1 * si$cost)

[1] 806.2393

plot solution
spplot(sl, "solution_1", col.regions = c("white", "darkgreen"), main = "s1")

1.0

0.8

0.6

0.4

0.2

0.0

Now let’s examine the solution.

1. How many planing units were selected in the prioritization? What proportion of
o planning units were selected in the prioritization?
2. Is there a pattern in the spatial distribution of the priority areas?
3. Can you verify that all of the targets were met in the prioritization (hint:
feature_representation(pl, si[, "solution_1"]))?

5.3 Adding complexity

Our first prioritization suffers many limitations, so let’s add additional constraints to the
problem to make it more useful. First, let’s lock in planing units that are already by covered

38 CHAPTER 5. SPATIAL PRIORITIZATIONS

protected areas. If some vegetation communities are already secured inside existing protected
areas, then we might not need to add as many new protected areas to the existing protected
area system to meet their targets. Since our planning unit data (pu_da) already contains
this information in the locked_in column, we can use this column name to specify which
planning units should be locked in.

make prioritization problem

p2 <- problem(pu_data, veg_data, cost_column = "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.05) %>%
add_locked_in_constraints("locked in") %>%
add_binary_decisions() %>%
add_lpsymphony_solver (verbose = FALSE)

print problem
print (p2)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)

#i# cost: min: 0.19249, max: 61.92727

features: vegetation.l, vegetation.2, vegetation.3, ... (62 features)

objective: Minimum set objective

targets: Relative targets [targets (min: 0.05, max: 0.05)]

decisions: Binary decision

constraints: <Locked in planning units [257 locked units]>

penalties: <none>

portfolio: default

solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose

solve problem
s2 <- solve(p2)

plot solution
spplot(s2, "solution 1", col.regions = c("white", "darkgreen"), main = "s2")

5.3. ADDING COMPLEXITY 39

Let’s pretend that we talked to an expert on the vegetation communities in our study system
and they recommended that a 20% target was needed for each vegetation class. So, armed
with this information, let’s set the targets to 20%.

make prioritization problem

p3 <- problem(pu_data, veg _data, cost_column = "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked in") %>%
add_binary_decisions() %>%

add_lpsymphony_solver (verbose = FALSE)

print problem
print (p3)

Conservation Problem

#i#
##
##
#i#
#i#
#i#
##
##
##
#it

planning units:
cost:

features:
objective:
targets:
decisions:
constraints:
penalties:
portfolio:
solver:

SpatialPolygonsDataFrame (1130 units)

min: 0.19249, max: 61.92727

vegetation.1l, vegetation.2, vegetation.3, ... (62 features)

Minimum set objective

Relative targets [targets (min: 0.2, max: 0.2)]

Binary decision

<Locked in planning units [257 locked units]>

<none>

default

Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose

40

solve problem
s3 <- solve(p3)

plot solution
spplot(s3, "solution_1", col.regions = c("white", "darkgreen"), main = "s3")

CHAPTER 5. SPATIAL PRIORITIZATIONS

Next, let’s lock out highly degraded areas. Similar to before, this data is present in our
planning unit data so we can use the locked out column name to achieve this.

make prioritization problem

p4 <- problem(pu_data, veg data, cost_column = "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked in") %>%
add_locked_out_constraints("locked out") %>%
add_binary_decisions() %>%

add_lpsymphony_solver (verbose = FALSE)

print problem
print (p4)

Conservation Problem

#i#t
##
#i#
##
#it

planning units:
cost:

features:
objective:
targets:

SpatialPolygonsDataFrame (1130 units)

min: 0.19249, max: 61.92727

vegetation.l, vegetation.2, vegetation.3, ... (62 features)
Minimum set objective

Relative targets [targets (min: 0.2, max: 0.2)]

5.3. ADDING COMPLEXITY 41

decisions: Binary decision

constraints: <Locked out planning units [132 locked units]

#H Locked in planning units [257 locked units]>

penalties: <none>

portfolio: default

solver: Lpsymphony [first feasible (0), gap (0.1), time_limit (-1), verbose

solve problem
s4 <- solve(p4)

plot solution
spplot(s4, "solution 1", col.regions = c("white", "darkgreen"), main = "s4")

s4

42 CHAPTER 5. SPATIAL PRIORITIZATIONS
Now, let’s compare the solutions.

What is the cost of the planning units selected in s2, s3, and s47

How many planning units are in s2, s3, and s4?

Do the solutions with more planning units have a greater cost? Why or why not?

Why does the first solution (s1) cost less than the second solution with protected

areas locked into the solution (s2)?

5. Why does the third solution (s3) cost less than the fourth solution solution with
highly degraded areas locked out (s4)?

6. Since planning units covered by existing protected areas have already been pur-
chased, what is the cost for expanding the protected area system based on on the
fourth prioritization (s4) (hint: total cost minus the cost of locked in planning
units)?

7. What happens if you specify targets that exceed the total amount of vege-

tation in the study area and try to solve the problem? You can do this by

modifying the code to make p4 with add_absolute_targets(1000) instead of
add_relative_targets(0.2) and generating a new solution.

>0 9=

5.4 Penalizing fragmentation

Plans for protected area systems should facilitate gene flow and dispersal between individual
reserves in the system. However, the prioritizations we have made so far have been highly
fragmented. Similar to the Marxan decision support tool, we can add penalties to our
conservation planning problem to penalize fragmentation (i.e. total exposed boundary length)
and we also need to set a useful penalty value when adding such penalties (akin to Marxan’s
boundary length multiplier value; BLM). If we set our penalty value too low, then we will
end up with a solution that is identical to the solution with no added penalties. If we set
our penalty value too high, then prioritizr will take a long time to solve the problem and we
will end up with a solution that contains lots of extra planning units that are not needed
(since the penalty value is so high that minimizing fragmentation is more important than
cost). As a rule of thumb, we generally want penalty values between 0.00001 and 0.01 but
finding a useful penalty value requires calibration. The “correct” penalty value depends on
the size of the planning units, the main objective values (e.g. cost values), and the effect
of fragmentation on biodiversity persistence. Let’s create a new problem that is similar to
our previous problem (p4)—except that it contains boundary length penalties and a slightly
higher optimality gap to reduce runtime (default is 0.1)—and solve it. Since our planning
unit data is in a spatial format (i.e. vector or raster data), prioritizr can automatically
calculate the boundary data for us.

5.4. PENALIZING FRAGMENTATION 43

make prioritization problem

p5 <- problem(pu_data, veg data, cost_column = "cost") %>%
add_min_set_objective() %>%
add_boundary_penalties(penalty = 0.0005) %>7%
add_relative_targets(0.2) %>’
add_locked_in_constraints("locked in") %>%
add_locked_out_constraints("locked out") %>%
add_binary_decisions() %>%

add_lpsymphony_solver (verbose = FALSE, gap = 1)

print problem
print (p5)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)

#it
#i#
##
##
##
#it
#i#
##
##
##
##

cost:
features:
objective:
targets:
decisions:
constraints:

penalties:
portfolio:
solver:

solve problem,
note this will take around 30 seconds

sb

<- solve(p5)

print solution
print (s5)

##
#it
#it
##
#i#
##
#it
#it

class
features
extent

crs
variables
names

min values
max values

min: 0.19249, max: 61.92727
vegetation.1l, vegetation.2, vegetation.3, ... (62 features)
Minimum set objective
Relative targets [targets (min: 0.2, max: 0.2)]
Binary decision
<Locked in planning units [257 locked units]
Locked out planning units [132 locked units]>
<Boundary penalties [edge factor (min: 0.5, max: 0.5), penalty (5e-
default
Lpsymphony [first_feasible (0), gap (1), time_limit (-1), verbose (

: SpatialPolygonsDataFrame

1130
1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)

: +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellr
7

id, cost, status, locked_in, locked_out, pa_status, solu
1, 0.192488262910798, 0, 0, 0, 0,
1130, 61.9272727272727, 2, 1, 1, 1,

44

CHAPTER 5. SPATIAL PRIORITIZATIONS

plot solution
spplot(s5, "solution 1", col.regions = c("white", "darkgreen"), main = "s5")

Now let’s compare the solutions to the problems with (s5) and without (s4) the boundary
length penalties.

@

1.

.

What is the cost the fourth (s4) and fifth (s5) solutions? Why does the fifth
solution (s5) cost more than the fourth (s4) solution?

Try setting the penalty value to 0.000000001 (i.e. 1e-9) instead of 0.0005. What
is the cost of the solution now? Is it different from the fourth solution (s4) (hint:
try plotting the solutions to visualize them)? Is this is a useful penalty value?
Why?

Try setting the penalty value to 0.5. What is the cost of the solution now? Is it
different from the fourth solution (s4) (hint: try plotting the solutions to visualize
them)? Is this a useful penalty value? Why?

5.5. BUDGET LIMITED PRIORITIZATIONS 45

5.5 Budget limited prioritizations

In the real-world, the funding available for conservation is often very limited. As a conse-
quence, decision makers often need prioritizations where the total cost of priority areas does
not exceed a budget. In our fourth prioritization (s4), we found that we would need to spend
an additional $909 million AUD to ensure that each vegetation community is adequately rep-
resented in the protected area system. But what if the funds available for establishing new
protected areas were limited to $100 million AUD? In this case, we need a “budget limited
prioritization”. Budget limited prioritizations aim to maximize some measure of conservation
benefit subject to a budget (e.g. number of species with at least one occurrence in the pro-
tected area system, or phylogenetic diversity). Let’s create a prioritization by maximizing
the number of adequately represented features whilst keeping within a pre-specified budget.

funds for additional land acquisition (same units as cost data)
funds <- 100

calculate the total budget for the prioritization
budget <- funds + sum(s4$cost * s4$locked_in)
print (budget)

[1] 8575.56

make prioritization problem

p6 <- problem(pu_data, veg_data, cost_column = "cost") %>%
add_max_features_objective(budget) %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked in") %>%
add_locked_out_constraints("locked out") %>%
add_binary_decisions() %>%
add_lpsymphony_solver (verbose = FALSE)

print problem
print (p6)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)

cost: min: 0.19249, max: 61.92727

features: vegetation.1l, vegetation.2, vegetation.3, ... (62 features)
objective: Maximum representation objective [budget (8575.56009869836)]
targets: Relative targets [targets (min: 0.2, max: 0.2)]

decisions: Binary decision

constraints: <Locked out planning units [132 locked units]

Locked in planning units [257 locked units]>

https://prioritizr.net/reference/add_max_cover_objective.html
https://prioritizr.net/reference/add_max_cover_objective.html
https://prioritizr.net/reference/add_max_phylo_div_objective.html

46 CHAPTER 5. SPATIAL PRIORITIZATIONS

penalties: <none>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose

solve problem
s6 <- solve(p6)

plot solution
spplot(s6, "solution_1", col.regions = c("white", "darkgreen"), main = "s6")

s6

calculate feature representation
r6 <- feature_representation(p6, s6[, "solution 1"])

calculate number of features with targets met
sum(r6$relative_held >= 0.2, na.rm = TRUE)

[1] 28

find out which features have their targets met when we add weights,
note that NA is for vegetation.61
print (ré$feature[r6$relative_held >= 0.2])

[1] "vegetation.l" ‘"vegetation.2" ‘"vegetation.3" ‘"vegetation.4"
[5] "vegetation.5" ‘"vegetation.6" ‘'"vegetation.7" '"vegetation.8"
[9] "vegetation.11" "vegetation.12" "vegetation.13" "vegetation.14"
[13] "vegetation.15" "vegetation.17" "vegetation.25" "vegetation.28"
[17] "vegetation.29" "vegetation.30" "vegetation.32" "vegetation.33"
[21] "vegetation.34" "vegetation.35" "vegetation.36" "vegetation.37"

5.5. BUDGET LIMITED PRIORITIZATIONS 47

[25] "vegetation.38" "vegetation.39" "vegetation.40" "vegetation.45"
[29] NA

We can also add weights to specify that it is more important to meet the targets for certain
features and less important for other features. A common approach for weighting features is
to assign a greater importance to features with smaller spatial distributions. The rationale
behind this weighting method is that features with smaller spatial distributions are at greater
risk of extinction. So, let’s calculate some weights for our vegetation communities and see
how weighting the features changes our prioritization.

calculate weights as the log inverse number of grid cells that each vegetation
class occupies, rescaled between 1 and 100

wts <- 1 / cellStats(veg_data, "sum"

wts <- rescale(wts, to = c(1, 10))

print the name of the feature with smallest weight
names (veg_data) [which.min(wts)]

[1] "vegetation.20"

print the name of the feature with greatest wetght
names (veg_data) [which.max(wts)]

[1] "vegetation.52"

plot histogram of weights
hist(wts, main = "feature weights")

feature weights

o _
<
o |
> ™
c
o)
=
o |
o «
[
o _|
—
o 1

48

CHAPTER 5. SPATIAL PRIORITIZATIONS

make prioritization problem with weights

p7 <- problem(pu_data, veg data, cost_column = "cost") %>%
add_max_features_objective(budget) %>%
add_relative_targets(0.2) %>%
add_feature_weights(wts) %>%
add_locked_in_constraints("locked in") %>%
add_locked_out_constraints("locked out") %>%
add_binary_decisions() %>%

add_lpsymphony_solver (verbose = FALSE)

print problem
print (p7)

Conservation Problem

##
#it
#i#
##
#it
#i#t
##
##
#i#
#Hit
#it

planning units:
cost:

features:
objective:
targets:
decisions:
constraints:

penalties:
portfolio:
solver:

solve problem
s7 <- solve(p7)

plot solution
spplot(s7, "solution 1", col.regions = c("white", "darkgreen"), main = "s7")

SpatialPolygonsDataFrame (1130 units)
min: 0.19249, max: 61.92727
vegetation.l, vegetation.2, vegetation.3, ... (62 features)
Maximum representation objective [budget (8575.56009869836)]
Relative targets [targets (min: 0.2, max: 0.2)]
Binary decision
<Locked in planning units [257 locked units]
Locked out planning units [132 locked units]>
<Feature weights [weights (min: 1, max: 10)]>
default
Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose

5.5. BUDGET LIMITED PRIORITIZATIONS 49

calculate feature representation
r7 <- feature_representation(p7, s7[, "solution 1"])

calculate number of features with targets met
sum(r7$relative_held >= 0.2, na.rm = TRUE)

[1] 26

find out which features have their targets met when we add weights,
note that NA is for vegetation.61
print (r7$feature[r7$relative_held >= 0.2])

[1] "vegetation.l" ‘"vegetation.2" ‘'"vegetation.4" ‘'"vegetation.5"
[5] "vegetation.6" ‘'"vegetation.8" '"vegetation.11" "vegetation.28"
[9] "vegetation.29" "vegetation.30" "vegetation.32" "vegetation.33"
[13] "vegetation.34" "vegetation.35" "vegetation.36" "vegetation.37"
[17] "vegetation.38" "vegetation.39" "vegetation.40" "vegetation.45"
[21] "vegetation.49" "vegetation.50" "vegetation.52" "vegetation.53"
[25] "vegetation.b54" "vegetation.55" NA

[\]

1. What is the name of the feature with the smallest weight?
o . What is the cost of the sixth (s6) and seventh (s7) solutions?
3. Does there seem to be a big difference in which planning units were selected in
the sixth (s6) and seventh (s7) solutions?
4. Is there a difference between which features are adequately represented in the
sixth (s6) and seventh (s7) solutions? If so, what is the difference?

50 CHAPTER 5. SPATIAL PRIORITIZATIONS

5.6 Solution portfolios

In systematic conservation planning, only rarely do we have data on all of the stakeholder
preferences and biodiversity features that we are interested in conserving. As a consequence,
it is often useful to generate a portfolio of near optimal solutions to present to decision
makers to guide the reserve selection process. Generally we would want many solutions in
our portfolio (e.g. 1000) to ensure that our portfolio contains a range of spatially distinct
solutions, but here we will generate a portfolio containing just six near-optimal solutions so
the code doesn’t take too long to run. We will also increase the optimality gap to obtain
solutions that are more suboptimal than earlier (the default gap value is 0.1).

make problem with a shuffle portfolzo

p8 <- problem(pu_data, veg data, cost_column = "cost") %>%
add_max_features_objective(budget) %>%
add_relative_targets(0.2) %>%
add_feature_weights(wts) %>%
add_binary_decisions() %>%
add_shuffle_portfolio(number_ solutions = 6,

remove_duplicates = FALSE) %>%

add_lpsymphony_solver (verbose = TRUE, gap = 10)

5.6. SOLUTION PORTFOLIOS 51

print problem
print (p8)

Conservation Problem

#i#
#i#
#it
#i#
##
#i#
##
#Hit
#it
##

planning units:
cost:

features:
objective:
targets:
decisions:
constraints:
penalties:
portfolio:
solver:

solve problem
note that this will contain sixz solutions since we added a portfolio

s8

<- solve(p8)

print solution

SpatialPolygonsDataFrame (1130 units)

min: 0.19249, max: 61.92727

vegetation.1l, vegetation.2, vegetation.3, ... (62 features)

Maximum representation objective [budget (8575.56009869836)]
Relative targets [targets (min: 0.2, max: 0.2)]

Binary decision

<none>

<Feature weights [weights (min: 1, max: 10)]>

Shuffle portfolio [number_solutions (6), remove_duplicates (0), thi
Lpsymphony [first_feasible (0), gap (10), time_limit (-1), verbose

print (s8)

class : SpatialPolygonsDataFrame

features : 1130

extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)

crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellr
variables ;12

names : id, cost, status, locked_in, locked_out, pa_status, solu
min values : 1, 0.192488262910798, 0, 0, 0, 0,

max values : 1130, 61.9272727272727, 2, 1, 1, 1,

calculate the cost of the first solution
sum(s8$solution_1 * s8%cost)

#it

[1] 2194.232

calculate the cost of the second solution
sum(s8%solution_ 2 * s8$cost)

##

[1] 2139.89

52 CHAPTER 5. SPATIAL PRIORITIZATIONS

calculate the proportion of planning units with the same solution wvalues
in the first and second solutions
mean(s8$solution_1 == s8%solution_2)

[1] 0.9752212

plot first solution
spplot(s8, "solution_1", col.regions = c("white", "darkgreen"),
main = "s8 (solution 1)")

s8 (solution 1)

1.0

0.8

0.6

0.4

0.2

0.0

5.6. SOLUTION PORTFOLIOS 53

plot all solutions

s8_plots <- lapply(pasteO("solution ", seq_len(6)), function(x) {
spplot(s8, x, main = x, col.regions = c("white", "darkgreen"))

)

do.call(grid.arrange, append(s8_plots, list(ncol = 3)))

solution_1 solution_2 solution_3
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
3 0.4 0.4 0.4
0.2 0.2 £ 0.2
0.0 0.0 0.0
solution_6
1.0 10 |BH ‘ 1.0
: 0.8 0.8 : 0.8
0.6 0.6 0.6
0.4 0.4 . 0.4
0.2 0.2 , 0.2
0.0 0.0 ‘S 0.0

1. What is the cost of each of the six solutions in portfolio? Are their costs very
different?

2. Are the solutions in the portfolio very different?

3. What could we do to obtain a portfolio with more different solutions?

o4

CHAPTER 5. SPATIAL PRIORITIZATIONS

Chapter 6

Answers

This chapter contains the answers to the questions presented in the earlier chapters. The
answers are provided here so you can check if your answers are correct.

6.1 Data

6.1.1 Planning unit data

&

oo

11.

NS>

nrow(pu_data)

max (pu_data$cost)

sum(pu_data$locked_in)

mean (pu_data$locked_in)

sum(pu_data$locked_out)

mean (pu_data$locked_out)
assert_that(min(c(pu_data$locked_in, pu_data$locked out)) ==
assert_that(max(c(pu_data$locked_in, pu_data$locked out)) ==
all(is.finite(pu_data$cost))

assert_that (sum(duplicated(pu_data$id)) == 0)

. Yes, the eastern side of Tasmania is generally much cheaper than the

side.

0)
1)

western

Yes, most planning units covered by protected areas are located in the south-

western side of Tasmania.

55

56 CHAPTER 6. ANSWERS

6.1.2 Vegetation data

&

Central-north Tasmania

cellStats(veg_datal[[12]], "mean")

names (veg_data) [which.max(cellStats(veg_data, "sum"))]
Yes, they are the same.

> =

6.2 Gap analysis

6.2.1 Feature abundance

median(abundance_data$absolute_abundance km2)

min(abundance data$absolute_abundance km2)
abundance_data$feature[which.min(abundance_data$absolute_abundance_km?2)]
sum(abundance data$absolute abundance km2)
sum(abundance_data$absolute_abundance_km2 > set_units(100, km~2))

KPR

6.2.2 Feature representation by protected areas

mean (repr_data$relative_held, na.rm = TRUE)
mean (repr_data$absolute_held km2, na.rm = TRUE)
repr_data$feature[which.max(repr_data$relative_held)]
repr_data$feature[which.max(repr_data$absolute_held)]
No, just because a vegetation class is widespread does not necessarily mean that
it has the greatest overlap with protected areas. In fact, due to biases in the
establishment of protected areas this can often be the case.
6. Yes, the largest protected areas tend to have the great representation (broadly
speaking).
plot(abundance_data$absolute_abundance, repr_data$relative_held)
7. sum(repr_data$absolute_held < le-10) (floating point errors)
sum(repr_data$relative_held > 0.1, na.rm = TRUE)
9. sum(repr_data$relative_held > 0.2, na.rm = TRUE)

e PR =

e

6.3. SPATIAL PRIORITIZATIONS 57

6.3 Spatial prioritizations

6.3.1 Starting out simple

©

sum(s1$solution 1)

mean(si$solution 1)

Yes, the planning units are generally spread out across most of the study area
and they are not biased towards specific areas.
all(feature_representation(pl, si1[, "solution 1"])$relative_held

>= 0.2)

6.3.2 Adding complexity

©

sum(s28cost * s28solution 1)

sum(s3$cost * s3$solution_1)

sum(s4$cost * sd4$solution 1)

sum(s2$solution_1)

sum(s3$solution_ 1)

sum(s4$solution 1)

No, just because a solution a solution has more planning units does not mean
that it will cost less.

This is because the planning units covered by existing protected areas have a
non-zero cost and locking in these planning units introduces inefficiencies into the
solution. This is very common in real-world conservation prioritizations because
existing protected areas are often in places that do little to benefit biodiversity
[Fuller et al., 2010].

This is because some of the planning units that are highly degraded—based on just
the planning unit costs and vegetation data—provide cost-efficient opportunities
for meeting the targets and excluding them from the reserve selection process
means that other more costly planning units are needed to meet the targets.
sum(s4$cost * sd4$solution_1) - sum(sd$cost * sd4$locked in)

We get an error message stating the the problem is infeasible because there is no
valid solution—even if we selected all the planning units the study area we would
still not meet the targets.

58 CHAPTER 6. ANSWERS

6.3.3 Penalizing fragmentation

1. The cost of the fourth solution is sum(s4$solution 1 * s4$cost) and the cost
Q of the fifth solution is sum(s5$solution_1 * sb$cost). The fifth solution (s5)
costs more than the fourth solution (s4) because we have added penalties to the
conservation planning problem to indicate that we are willing to accept a slightly
more costly solution if it means that we can reduce fragmentation.

2. The solution is now nearly identical to the fourth solution (s4) and so has nearly
the same cost. This penalty value is too low and is not useful because it does not
reduce the fragmentation in our solution.

3. The solution now contains a lot of extra planning units that are not needed to
meet our targets. In fact, nearly every planning unit in the study is now selected.
This penalty value is too high and is not useful.

6.3.4 Budget limited prioritizations

2. sum(s6$cost * s6$solution 1)
sum(s7$cost * s7$solution 1)

3. No, the sixth (s6) and seventh (s7) solutions both share many of the same selected
planning units and there does not appear to be an obvious difference in the spatial
location of the planning units which they do not share.

4. Yes. Both solutions contain adequately represent these features:
r6$feature[r6$relative _held > 0.2 & r7$relative_held > 0.2]

The sixth (s6) is adequately represents these features too:
r6$feature[r6$relative_held > 0.2 & !r7$relative_held > 0.2]
The seventh (s7) is adequately represents these features too:
r7$feature[r7$relative_held > 0.2 & !r6$relative_held > 0.2]

Q 1. names(veg_data) [which.min(wts)]

6.3. SPATIAL PRIORITIZATIONS 59

6.3.5 Solution portfolios

1. No the cost are very similar.
Q sum(s8$solution_1 * s8$cost)

sum(s8$solution 2 * s8%cost)
sum(s8$solution 3 * s8$cost)
sum(s8%solution 4 * s8$cost)
sum(s8$solution 5 * s8$cost)
sum(s8$%solution 6 * s8$cost)

2. No the status of the planning units are very similar in the all of the solutions in
the portfolio.
mean((s8%solution 1 == s8$%solution 2) & (s8%solution 1 == s8$%solution 3)
& (s8%solution_1 == s8%solution 4) & (s8$%solution_1 == s8$%solution_5)
& (s8%solution_1 == s8%solution 6))

3. We should increase the number of the solutions in the portfolio.

* ¥ X% x

*

60

CHAPTER 6. ANSWERS

Chapter 7

Acknowledgements

Many thanks to Icons8 for providing the icons used in this manual and to Yihui Xie for
developing the bookdown R package that underpins this manual. We also thank Garrett
Grolemund and Hadley Wickham for creating one of the Rstudio screenshots used in this
manual that was originally a part of their R for Data Science book.

61

https://icons8.com
http://bookdown.org

62

CHAPTER 7. ACKNOWLEDGEMENTS

Chapter 8

Session information

print sesstion information
sessionInfo()

#i
##
#i#
##
#it
#it
##
#i#
#i#
#it
#it
##
#it
#i#
##
#it
##
##
#i#
##
#it
#it
##
#i#
#i#
#it

R version 3.6.1 (2017-01-27)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS: /home/travis/R-bin/lib/R/1lib/libRblas.so
LAPACK: /home/travis/R-bin/1lib/R/1lib/1libRlapack.so

locale:
[1] LC_CTYPE=en US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en US.UTF-8 LC_COLLATE=en US.UTF-8
[5] LC_MONETARY=en US.UTF-8 LC_MESSAGES=en US.UTF-8
[7] LC_PAPER=en US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C L.C_TELEPHONE=C

[11] LC_MEASUREMENT=en US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] gridExtra 2.3 assertthat_0.2.1 scales_1.0.0 units_0.6-5

[5] mapview _2.7.0 rgeos_0.5-2 rgdal_1.4-6 prioritizr 4.1.4
[9] proto_1.0.0 raster_3.0-7 sp_1.3-1 forcats 0.4.0
[13] stringr 1.4.0 dplyr_0.8.3 purrr_0.3.2 readr_1.3.1

[17] tidyr_1.0.0 tibble_2.1.3 ggplot2_3.2.1 tidyverse_1.2.1

63

64

##
#it
#it
##
#i#
#i#
#it
#it
##
#i#t
#i#
##
#it
##
##
#i#
##
#it
#i#
##
#i#
##
#it
#it
##
#i#
#i#

CHAPTER 8. SESSION INFORMATION

loaded via a namespace (and not attached):

(1]

(4]

(7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[62]
[65]
(58]
(61]
[64]
(671
[70]
[73]
[76]

nlme_3.1-140
lubridate_1.7.4
tools 3.6.1
R6_2.4.0

lazyeval 0.2.2
tidyselect_0.2.5
cli 1.1.0
bookdown_0.14.1
rmarkdown_1.16
htmltools 0.4.0
htmlwidgets_1.5.1
rstudioapi_0.10
jsonlite_1.6
Matrix_1.2-17
fansi 0.4.0

yaml 2.2.0
parallel _3.6.1
lattice 0.20-38
zeallot 0.1.0
uuid_0.1-2
stats4_3.6.
modelr_0.1.
httpuv_1.5.
xfun 0.10
broom_0.5.2
class_7.3-15

1
5
2

sf_0.8-0
webshot_0.5.1
backports_1.1.5
KernSmooth 2.23-15
colorspace_1.4-1
leaflet_2.0.2
rvest_0.3.4
classInt_0.4-1
base64enc_0.1-3
lpsymphony_ 1.12.0
rlang 0.4.0

shiny 1.4.0
crosstalk 1.0.0
Rcpp_1.0.2
lifecycle 0.1.0
plyr_1.8.4
promises_1.1.0
haven 2.1.1

knitr 1.25
velox_0.2.0

glue 1.3.1
png_0.1-7
cellranger_1.1.0
mime 0.7
el071_1.7-2
viridisLite_0.3.0

satellite_1.0.1
httr_1.4.1
utf8_1.1.4
DBI_1.0.0

withr 2.1.2
compiler_3.6.1
xml2_ 1.2.2
digest_0.6.21
pkgconfig 2.0.3
fastmap_1.0.1
readxl 1.3.1
generics_0.0.2
magrittr_1.5
munsell 0.5.0
stringi_1.4.3
grid _3.6.1
crayon_1.3.4
hms 0.5.1
pillar_1.4.2
codetools_0.2-16
evaluate 0.14
vetrs_0.2.0
gtable_0.3.0
xtable_1.8-4
later_1.0.0

Chapter 9

References

65

66

CHAPTER 9. REFERENCES

Bibliography

Stuart H.M. Butchart, Martin Clarke, Robert J. Smith, Rachel E. Sykes, Jorn P.W. Scharle-
mann, Mike Harfoot, Graeme M. Buchanan, Ariadne Angulo, Andrew Balmford, Bastian
Bertzky, Thomas M. Brooks, Kent E. Carpenter, Mia T. Comeros-Raynal, John Cor-
nell, G. Francesco Ficetola, Lincoln D.C. Fishpool, Richard A. Fuller, Jonas Geldmann,
Heather Harwell, Craig Hilton-Taylor, Michael Hoffmann, Ackbar Joolia, Lucas Joppa,
Naomi Kingston, lan May, Amy Milam, Beth Polidoro, Gina Ralph, Nadia Richman,
Carlo Rondinini, Daniel B. Segan, Benjamin Skolnik, Mark D. Spalding, Simon N. Stu-
art, Andy Symes, Joseph Taylor, Piero Visconti, James E.M. Watson, Louisa Wood, and
Neil D. Burgess. Shortfalls and solutions for meeting national and global conservation
area targets. Conservation Letters, 8(5):329-337, 2015.

Richard A Fuller, Eve McDonald-Madden, Kerrie A Wilson, Josie Carwardine, Hedley S
Grantham, James EM Watson, Carissa J Klein, David C Green, and Hugh P Possingham.
Replacing underperforming protected areas achieves better conservation outcomes. Nature,
466(7304):365, 2010.

Ana S. L. Rodrigues, H. Resit Ak¢akaya, Sandy J. Andelman, Mohamed I. Bakarr, Luigi
Boitani, Thomas M. Brooks, Janice S. Chanson, Lincoln D. C. Fishpool, Gustavo A. B.
Da Fonseca, Kevin J. Gaston, Michael Hoffmann, Pablo A. Marquet, John D. Pilgrim,
Robert L. Pressey, Jan Schipper, Wes Sechrest, Simon N. Stuart, Les G. Underhill,
Robert W. Waller, Matthew E. J. Watts, and Xie Yan. Global gap analysis: priority
regions for expanding the global protected-area network. BioScience, 54(12):1092-1100,
2004.

67

	Welcome!
	Introduction
	Data
	Gap analysis
	Spatial prioritizations
	Answers
	Acknowledgements
	Session information
	References

