
PRIORITIZR WORKSHOP MANUAL
Jeffrey O. Hanson (with modifications by Richard Schuster)

2019-11-15

2

Contents

1 Welcome! 5

2 Introduction 7

3 Redo Marxan analysis 11

4 Data 23

5 Spatial prioritizations 37

6 Answers 57

7 Acknowledgements 63

8 Session information 65

9 References 67

3

4 CONTENTS

Chapter 1

Welcome!

Here you will find the manual for the prioritizr module of the Introduction to Marxan &
MarZone & Prioritizr - Training Course held at University of Victoria, Victoria, Canada.
Before you arrive at the workshop, you should make sure that you have correctly
set up your computer for the workshop and you have downloaded the data from
here. We cannot guarantee a reliable Internet connection during the workshop,
and so you may be unable to complete the workshop if you have not set up your
computer beforehand.

5

https://pacmara.org/
https://pacmara.org/
https://github.com/prioritizr/PacMara_workshop/raw/master/data.zip
https://github.com/prioritizr/PacMara_workshop/raw/master/data.zip

6 CHAPTER 1. WELCOME!

Chapter 2

Introduction

2.1 Overview

The aim of this workshop is to help you get started with using the prioritizr R package for
systematic conservation planning. It is not designed to give you a comprehensive overview
and you will not become an expert after completing this workshop. Instead, we want to help
you understand the core principles of conservation planning and guide you through some of
the common tasks involved with developing prioritizations. In other words, we want to give
you the knowledge base and confidence needed to start applying systematic conservation
planning to your own work.

You are not alone in this workshop. If you are having trouble, please put your hand up
and one of the instructors will help you as soon as they can. You can also ask the people
sitting next to you for help too. Most importantly, the code needed to answer the
questions in this workshop are almost always located in the same section as the
question. So if you are stuck, try rereading the example code and see if you can
modify it to answer the question. Please note that the first thing an instructor will ask
you will be “what have you tried so far?”. We can’t help you if you haven’t tried anything.

2.2 Setting up your computer

You will need to have both R and RStudio installed on your computer to complete this
workshop. Although it is not imperative that you have the latest version of RStudio installed,
you will need the latest version of R installed (i.e. version 3.6.1). Please note that
you might need administrative permissions to install these programs. After installing them,
you will also need to install some R packages too.

7

https://www.r-project.org
https://www.rstudio.com/

8 CHAPTER 2. INTRODUCTION

2.2.1 R

The R statistical computing environment can be downloaded from the Comprehensive R
Archive Network (CRAN). Specifically, you can download the latest version of R (version
3.6.1) from here: https://cloud.r-project.org. Please note that you will need to download
the correct file for your operating system (i.e. Linux, Mac OSX, Windows).

2.2.2 RStudio

RStudio is an integrated development environment (IDE). In other words, it is a program that
is designed to make your R programming experience more enjoyable. During this workshop,
you will interact with R through RStudio—meaning that you will open RStudio to code in R.
You can download the latest version of RStudio here: http://www.rstudio.com/download.
When you start RStudio, you will see two main parts of the interface:

You can type R code into the Console and press the enter key to run code.

https://www.r-project.org
https://cloud.r-project.org
https://www.rstudio.com
http://www.rstudio.com/download

2.3. FURTHER READING 9

2.2.3 R packages

An R package is a collection of R code and documentation that can be installed to enhance
the standard R environment with additional functionality. Currently, there are over fifteen
thousand R packages available on CRAN. Each of these R packages are developed to per-
form a specific task, such as reading Excel spreadsheets, downloading satellite imagery data,
downloading and cleaning protected area data, or fitting environmental niche models. In
fact, R has such a diverse ecosystem of R packages, that the question is almost always not
“can I use R to …?” but “what R package can I use to …?”. During this workshop, we will
use several R packages. To install these R packages, please enter the code below in the
Console part of the RStudio interface and press enter. Note that you will require an Internet
connection and the installation process may take some time to complete.

install.packages(c("sf", "tidyverse", "sp", "rgeos", "rgdal", "raster",
"units", "prioritizr", "prioritizrdata", "Rsymphony",
"mapview", "assertthat", "velox", "remotes",
"gridExtra", "data.table", "readxl", "BiocManager"))

BiocManager::install("lpsymphony", version = "3.9")

2.3 Further reading

There is a wealth of resources available for learning how to use R. Although not required for
this workshop, I would highly recommend that you read R for Data Science by Garrett Grole-
mund and Hadley Wickham. This veritable trove of R goodness is freely available
online. If you spend a week going through this book then you will save months debugging
and rerunning incorrect code. I would urge any and all ecologists, especially those working
on Masters or PhD degrees, to read this book. I even bought this book as a Christmas
present for my sister—and, yes, she was happy to receive it! For intermediate users looking
to skill-up, I would recommend the The Art of R Programming: A Tour of Statistical Soft-
ware Design by Norman Matloff and Advanced R by Hadley Wickham. Finally, if you wish
to learn more about using R as a geospatial information system (GIS), I would recommend
Geocomputation with R by Robin Lovelace, Jakub Nowosad, and Jannes Muenchow which
is also freely available online. I also recommend Applied Spatial Data Analysis by Roger S.
Bivand, Edzer Pebesma, and Virgilio Gómez-Rubio too.

https://cran.r-project.org/web/packages/readxl/index.html
https://cran.r-project.org/web/packages/MODIStsp/index.html
https://cran.r-project.org/web/packages/wdpar/index.html
https://cran.r-project.org/web/packages/ENMeval/index.html
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
http://shop.oreilly.com/product/9781593273842.do
http://shop.oreilly.com/product/9781593273842.do
https://adv-r.hadley.nz/
https://geocompr.robinlovelace.net/
https://www.springer.com/gp/book/9781461476177
https://www.springer.com/gp/book/9781461476177

10 CHAPTER 2. INTRODUCTION

Chapter 3

Redo Marxan analysis

3.1 Introduction

Before we begin to prioritize areas for protected area establishment using the full feature set
of prioritizr, we will re-do the Marxan analysis from Tuesday in prioritizr. This exercise is
meant to show you how you can use your current Marxan files in prioritizr, if you choose to
do so. Once we have run the example using input.dat, as well as the individual .dat files,
we will also work on preparing the data you worked with on Monday to be used in prioritzr.
Once that’s complete, we will run our first prioritizr analysis, using the notation typical for
prioritizr analysis.

The data for this exercise were provided by PacMara and BCMCA.

3.2 Starting out

We will start by opening RStudio. Ideally, you will have already installed both R and Rstudio
before the workshop. If you have not done this already, then please see the Setting up your
computer section. During this workshop, please do not copy and paste code from
the workshop manual into RStudio. Instead, please write it out yourself in an
R script. When programming, you will spend a lot of time fixing coding mistakes—that
is, debugging your code—so it is best to get used to making mistakes now when you have
people here to help you. You can create a new R script by clicking on File in the RStudio
menu bar, then New File, and then R Script.

11

https://pacmara.org/
https://bcmca.ca/maps-data/browse-or-search/

12 CHAPTER 3. REDO MARXAN ANALYSIS

After creating a new script, you will notice that a new Source panel has appeared. In the
Source panel, you can type and edit code before you run it. You can run code in the Source
panel by placing the cursor (i.e. the blinking line) on the desired line of code and pressing
Control + Enter on your keyboard (or CMD + Enter if you are using an Apple computer).
You can save the code in the Source panel by pressing Control + s on your keyboard (or
CMD + s if you are using an Apple computer).

You can also make notes and write your answers to the workshop questions inside the R

3.3. ATTACHING PACKAGES 13

script. When writing notes and answers, add a # symbol so that the text following the #
symbol is treated as a comment and not code. This means that you don’t have to worry
about highlighting specific parts of the script to avoid errors.

this is a comment and R will ignore this text if you run it
R will run the code below because it does not start with a # symbol
print("this is not a comment")

[1] "this is not a comment"

you can also add comments to the same line of R code too
print("this is also not a comment") # but this is a comment

[1] "this is also not a comment"

Remember to save your script regularly to ensure that you don’t lose anything
in the event that RStudio crashes (e.g. using Control + s or CMD + s)!

3.3 Attaching packages

Now we will set up our R session for the workshop. Specifically, enter the following R code
to attach the R packages used in this workshop.

load packages
library(tidyverse)
library(prioritizr)
library(rgdal)
library(raster)
library(rgeos)
library(mapview)
library(units)
library(scales)
library(assertthat)
library(gridExtra)
library(data.table)
library(readxl)

14 CHAPTER 3. REDO MARXAN ANALYSIS

3.4 Base analysis on input.dat

Now we will redo the Marxan analyis you have done on Tuesday, but using prioritzr. To do
so we need the Marxan database you used on Tuesday, as well we the raw data you used on
Monday. The files for both are already included in the R Studio project you received for this
exercise. Now please open the PacMara_workshop.Rproj file by double clicking it. You are
now ready to start with the exercise.

First, we are going to use the information from the input.dat file to run the analysis you
completed on Tuesday, using prioritzr. To do so, all you need to do is point to input.dat and
tell prioritizr where to find it. Once that’s done we can generate the problem and solve it.

input_file <- "Marxan_database/input.dat"

p1 <- marxan_problem(input_file)

s1 <- solve(p1)

Next, we are going to have a look at the solution and explore the output by first displaying
a couple of rows from the output data, then counting the number of planning units in the
solution and calcualating the proportion of planning units in the solution.

head(s1)

id cost status locked_in locked_out solution_1
1 1 2000000 0 FALSE FALSE 1
2 2 2000000 0 FALSE FALSE 1
3 3 2000000 0 FALSE FALSE 1
4 4 2000000 0 FALSE FALSE 1
5 5 2000000 0 FALSE FALSE 1
6 6 2000000 0 FALSE FALSE 1

count number of planning units in solution
sum(s1$solution_1)

[1] 3262

proportion of planning units in solution
mean(s1$solution_1)

[1] 0.2683669

Next we are going to explore how well the features are represented in the solution.

3.4. BASE ANALYSIS ON INPUT.DAT 15

calculate feature representation
r1 <- feature_representation(p1, s1[, "solution_1", drop = FALSE])
print(r1)

A tibble: 19 x 3
feature absolute_held relative_held
<chr> <dbl> <dbl>
1 0-20 Hard 213510000 0.300
2 0-20 Muddy 145420000 0.302
3 0-20 Sandy 45810000 0.301
4 20-50 Hard 842380000 0.300
5 20-50 Muddy 120580000 0.300
6 20-50 Sandy 93400000 0.300
7 200+ Hard 136480000 0.300
8 200+ Muddy 870960000 0.300
9 200+ Sandy 1075960000 0.300
10 200+ UnId 2025510000 0.300
11 50-200 Hard 2151230000 0.300
12 50-200 Muddy 1080500000 0.300
13 50-200 Sandy 3347250000 0.300
14 50-200 UnId 3260000 0.337
15 iba 1991070000 0.300
16 kelp 51940000 0.305
17 killer whale 1596950000 0.386
18 sealions 697060000 0.494
19 seaotters 1596000000 0.3

Finally, we are going to visualize the solution by converting the solution to a spatial object.

pulayer <- readOGR("Marxan_database/pulayer/pulayer_BC_marine.shp", stringsAsFactors = FALSE)

OGR data source with driver: ESRI Shapefile
Source: "/home/travis/build/prioritizr/PacMara_workshop/Marxan_database/pulayer/pulayer_BC_marine.shp", layer: "pulayer_BC_marine"
with 12155 features
It has 1 fields
Integer64 fields read as strings: PUID

pulayer1 <- pulayer
pulayer1$solution_1 <- s1$solution_1
pulayer1$solution_1 <- factor(pulayer1$solution_1)
spplot(pulayer1, "solution_1", col.regions = c("grey90", "darkgreen"),

main = "marxan_problem solution")

16 CHAPTER 3. REDO MARXAN ANALYSIS

marxan_problem solution

0
1

Now, think about the following questions.

1. Are the results from Marxan and prioritizr the same/similar?
2. If you see differences, why do you think those differences occur?
3. Can you think of ways to reduce difference/improve outcomes?

3.5. BASE ANALYSIS USING INDIVIDUAL .DAT FILES 17

3.5 Base analysis using individual .dat files

Now, lets redo the analysis, but instead of using input.dat, we will use the individual .dat
files to create the problem. You will see that the syntax for the problem formulation is very
similar, but instead of supplying one value to the marxan_problem function, we now specify
pu, spec, puvsp and bound. If you want to learn more about the marxan_problem function,
just type in ?marxan_problem and you can have a look at the function help page.

pu <- fread("Marxan_database/input/pu.dat", data.table = FALSE)
spec <- fread("Marxan_database/input/spec.dat", data.table = FALSE)
puvsp <- fread("Marxan_database/input/puvsp.dat", data.table = FALSE)
bound <- fread("Marxan_database/input/bound.dat", data.table = FALSE)

p2 <- marxan_problem(x = pu, spec = spec, puvspr = puvsp)

s2 <- solve(p2)

count number of planning units in solution
sum(s2$solution_1)

[1] 3261

proportion of planning units in solution
mean(s2$solution_1)

[1] 0.2682847

calculate feature representation
r2 <- feature_representation(p2, s2[, "solution_1", drop = FALSE])
print(r2)

A tibble: 19 x 3
feature absolute_held relative_held
<chr> <dbl> <dbl>
1 0-20 Hard 213530000 0.300
2 0-20 Muddy 145420000 0.302
3 0-20 Sandy 45940000 0.302
4 20-50 Hard 842510000 0.300
5 20-50 Muddy 120590000 0.300
6 20-50 Sandy 93640000 0.301
7 200+ Hard 136630000 0.300
8 200+ Muddy 871080000 0.300
9 200+ Sandy 1075970000 0.300

18 CHAPTER 3. REDO MARXAN ANALYSIS

10 200+ UnId 2025510000 0.300
11 50-200 Hard 2150800000 0.300
12 50-200 Muddy 1081840000 0.301
13 50-200 Sandy 3347430000 0.300
14 50-200 UnId 3260000 0.337
15 iba 1992240000 0.300
16 kelp 51570000 0.303
17 killer whale 1594570000 0.385
18 sealions 702660000 0.498
19 seaotters 1596000000 0.3

3.6 Recreate the Marxan analysis starting from the
raw data

Now that we have solved a problem that was formatted the way Marxan needs data, lets go
ahead and start from the raw data, as you did on Monday.

We will first process the data, so we can use it in prioriztr and then we will create the
problem and solve it in the ‘standard’ prioritizr way.

Starting with the raw data from folder Marxan_Data we will go ahead and create our
problem. First, lets load all the data we need in terms of features:

We first load this Excel file to extract feature names later
feat_ids <- read_xlsx("Marxan_Data/conservation_feats_ids.xlsx")

now lets load all the rasters we need
iba <- raster("Marxan_Data/iba_bc.tif")
kelp <- raster("Marxan_Data/kelp_bc.tif")
killerw <- raster("Marxan_Data/killerwhale.tif")
seal <- raster("Marxan_Data/sealions.tif")
seao <- raster("Marxan_Data/seaotter.tif")

benthic <- raster("Marxan_Data/benthic14cl.tif")

benthic and the rest of the rasters are not exactly in the same format (same number of rows and columns)
so we need to go ahead and make sure benthic has the same format as the other rasters.
benthic <- resample(benthic, iba, method="ngb")

Now that we have loaded all the feature data into R, we need to go ahead and create the
benthic classes, you have used to setup the Marxan problem before. This is specific to the
way the benthic raster is setup and will differ from case to case in real world examples you
might explore in the future.

3.6. RECREATE THE MARXAN ANALYSIS STARTING FROM THE RAW DATA 19

In this specfic case, we know that benthic has a total of 14 classes, so the R code below does
split the benthic raster up into 14 rasters, based on cell values, and at the end puts them
together in a stack.

benthic_values <- values(benthic)
ben_list <- list()
for(ii in 1:14){

tmp_r <- benthic
tmp_r_val <- benthic_values
tmp_r_val <- ifelse(tmp_r_val == ii, 1, NA)
values(tmp_r) <- tmp_r_val

ben_list[[ii]] <- tmp_r

rm(tmp_r, tmp_r_val)

}
ben_stack <- stack(ben_list)

Now that all rasters have been created, we can combine them in a stack and give them the
names from the Excel file we read in earlier.

features <- stack(ben_stack, iba, kelp, killerw, seal, seao)
names(features) <- feat_ids$New_Name

Next, we load in the fishcost layer and also resample it to fit the rest of the raster layers.

fishcost <- raster("Marxan_Data/fishcost.tif")
fishcost <- resample(fishcost, iba, method="ngb")

Now its time to setup the prioritizr problem. As a first step, we are reading in the pulayer
from the Marxan_database. I’m doing this to show you a nice way to setup the prioritizr
problem, using a shapefile directly in the problem function call. We need to extract the
fishcost data to that pulayer, before we can use this information in the problem formulation.

pulayer <- readOGR("Marxan_database/pulayer/pulayer_BC_marine.shp", stringsAsFactors = FALSE)

OGR data source with driver: ESRI Shapefile
Source: "/home/travis/build/prioritizr/PacMara_workshop/Marxan_database/pulayer/pulayer_BC_marine.shp", layer: "pulayer_BC_marine"
with 12155 features
It has 1 fields
Integer64 fields read as strings: PUID

20 CHAPTER 3. REDO MARXAN ANALYSIS

pulayer$cost <- as.vector(fast_extract(fishcost, pulayer))

Now for the actual problem formulation. You will see that we use the pulayer as one of the
inputs to the problem function. As pulayer is a shapefile, we need to tell prioritzr which
attribute to use as the cost column. We also include the features raster stack directly in the
problem function. We also set the objective function (minumum set), the relative targets
(0.3 or 30% of each feature), and the decision type (binary for integer linear programming).

When that’s done we can solve the problem.

p3 <- problem(pulayer, cost_column = "cost", features = features, run_checks = FALSE) %>%
add_min_set_objective() %>%
add_relative_targets(0.3) %>%
add_binary_decisions()

s3 <- solve(p3)

As we have done before, we will now go ahead and extract summary statistics as well as
plot the results. We just worked through an entire prioritzr problem, from reading and
processing raw data to setting up and solving a problem, to extracting statistics and spatial
visualization of results.

count number of planning units in solution
sum(s3$solution_1, na.rm = TRUE)

[1] 2332

proportion of planning units in solution
mean(s3$solution_1, na.rm = TRUE)

[1] 0.1919816

s3$solution_1 <- factor(s3$solution_1)
spplot(s3, "solution_1", col.regions = c("grey90", "darkgreen"),

main = "problem solution")

3.6. RECREATE THE MARXAN ANALYSIS STARTING FROM THE RAW DATA 21

problem solution

0
1

22 CHAPTER 3. REDO MARXAN ANALYSIS

Chapter 4

Data

You should have already downloaded the data for the prioritizr module of this workshop. If
you have not already done so, you can download it from here: https://github.com/prioritizr/
PacMara_workshop/raw/master/data.zip. After downloading the data, you can unzip the
data into a new folder. Next, you will need to set the working directory to this new folder.
To achieve this, click on the Session button on the RStudio menu bar, then click Set Working
Directory, and then Choose Directory.

23

https://github.com/prioritizr/PacMara_workshop/raw/master/data.zip
https://github.com/prioritizr/PacMara_workshop/raw/master/data.zip

24 CHAPTER 4. DATA

Now navigate to the folder where you unzipped the data and select Open. You can verify
that you have correctly set the working directory using the following R code. You should
see the output TRUE in the Console panel.

file.exists("data/pu.shp")

[1] TRUE

4.1 Data import

Now that we have downloaded the dataset, we will need to import it into our R session.
Specifically, this data was obtained from the “Introduction to Marxan” course and was origi-
nally a subset of a larger spatial prioritization project performed under contract to Australia’s
Department of Environment and Water Resources. It contains vector-based planning unit
data (pu.shp) and the raster-based data describing the spatial distributions of 62 vegetation
classes (vegetation.tif) in Tasmania, Australia. Please note this dataset is only provided
for teaching purposes and should not be used for any real-world conservation planning. We
can import the data into our R session using the following code.

import planning unit data
pu_data <- readOGR("data/pu.shp")

OGR data source with driver: ESRI Shapefile
Source: "/home/travis/build/prioritizr/PacMara_workshop/data/pu.shp", layer: "pu"
with 1130 features
It has 5 fields

format columns in planning unit data
pu_data$locked_in <- as.logical(pu_data$locked_in)
pu_data$locked_out <- as.logical(pu_data$locked_out)

import vegetation data
veg_data <- stack("data/vegetation.tif")

4.2. PLANNING UNIT DATA 25

4.2 Planning unit data

The planning unit data contains spatial data describing the geometry for each planning
unit and attribute data with information about each planning unit (e.g. cost values). Let’s
investigate the pu_data object. The attribute data contains 5 columns with contain the
following information:

• id: unique identifiers for each planning unit
• cost: acquisition cost values for each planning unit (millions of Australian dollars).
• status: status information for each planning unit (only relevant with Marxan)
• locked_in: logical values (i.e. TRUE/FALSE) indicating if planning units are covered

by protected areas or not.
• locked_out: logical values (i.e. TRUE/FALSE) indicating if planning units cannot be

managed as a protected area because they contain are too degraded.

print a short summary of the data
print(pu_data)

class : SpatialPolygonsDataFrame
features : 1130
extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
variables : 5
names : id, cost, status, locked_in, locked_out
min values : 1, 0.192488262910798, 0, 0, 0
max values : 1130, 61.9272727272727, 2, 1, 1

plot the planning unit data
plot(pu_data)

26 CHAPTER 4. DATA

plot an interactive map of the planning unit data
mapview(pu_data)

print the structure of object
str(pu_data, max.level = 2)

Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 1130 obs. of 5 variables:
..@ polygons :List of 1130
..@ plotOrder : int [1:1130] 217 973 506 645 705 975 253 271 704 889 ...
..@ bbox : num [1:2, 1:2] 1080623 -4840595 1399989 -4497092
.. ..- attr(*, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

print the class of the object
class(pu_data)

[1] "SpatialPolygonsDataFrame"
attr(,"package")

4.2. PLANNING UNIT DATA 27

[1] "sp"

print the slots of the object
slotNames(pu_data)

[1] "data" "polygons" "plotOrder" "bbox" "proj4string"

print the geometry for the 80th planning unit
pu_data@polygons[[80]]

An object of class "Polygons"
Slot "Polygons":
[[1]]
An object of class "Polygon"
Slot "labpt":
[1] 1289177 -4558185
##
Slot "area":
[1] 1060361
##
Slot "hole":
[1] FALSE
##
Slot "ringDir":
[1] 1
##
Slot "coords":
[,1] [,2]
[1,] 1288123 -4558431
[2,] 1287877 -4558005
[3,] 1288177 -4558019
[4,] 1288278 -4558054
[5,] 1288834 -4558038
[6,] 1289026 -4557929
[7,] 1289168 -4557928
[8,] 1289350 -4557790
[9,] 1289517 -4557744
[10,] 1289618 -4557773
[11,] 1289836 -4557965
[12,] 1290000 -4557984
[13,] 1290025 -4557987
[14,] 1290144 -4558168
[15,] 1290460 -4558431
[16,] 1288123 -4558431

28 CHAPTER 4. DATA

##
##
##
Slot "plotOrder":
[1] 1
##
Slot "labpt":
[1] 1289177 -4558185
##
Slot "ID":
[1] "79"
##
Slot "area":
[1] 1060361

print the coordinate reference system
print(pu_data@proj4string)

CRS arguments:
+proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0
+ellps=GRS80 +units=m +no_defs

print number of planning units (geometries) in the data
nrow(pu_data)

[1] 1130

print the first six rows in the attribute data
head(pu_data@data)

id cost status locked_in locked_out
0 1 60.24638 0 FALSE TRUE
1 2 19.86301 0 FALSE FALSE
2 3 59.68051 0 FALSE TRUE
3 4 32.41614 0 FALSE FALSE
4 5 26.17706 0 FALSE FALSE
5 6 51.26218 0 FALSE TRUE

print the first six values in the cost column of the attribute data
head(pu_data$cost)

[1] 60.24638 19.86301 59.68051 32.41614 26.17706 51.26218

4.2. PLANNING UNIT DATA 29

print the highest cost value
max(pu_data$cost)

[1] 61.92727

print the smallest cost value
min(pu_data$cost)

[1] 0.1924883

print average cost value
mean(pu_data$cost)

[1] 25.13536

plot a map of the planning unit cost data
spplot(pu_data, "cost")

0

10

20

30

40

50

60

plot an interactive map of the planning unit cost data
mapview(pu_data, zcol = "cost")

Now, you can try and answer some questions about the planning unit data.

1. How many planning units are in the planning unit data?
2. What is the highest cost value?
3. How many planning units are covered by the protected areas (hint: sum(x))?

30 CHAPTER 4. DATA

4. What is the proportion of the planning units that are covered by the protected
areas (hint: mean(x))?

5. How many planning units are highly degraded (hint: sum(x))?
6. What is the proportion of planning units are highly degraded (hint: mean(x))?
7. Can you verify that all values in the locked_in and locked_out columns are

zero or one (hint: min(x) and max(x))?.
8. Can you verify that none of the planning units are missing cost values (hint:

all(is.finite(x)))?.
9. Can you very that none of the planning units have duplicated identifiers? (hint:

sum(duplicated(x)))?
10. Is there a spatial pattern in the planning unit cost values (hint: use spplot to

make a map).
11. Is there a spatial pattern in where most planning units are covered by protected

areas (hint: use spplot to make a map).

4.3. VEGETATION DATA 31

4.3 Vegetation data

The vegetation data describes the spatial distribution of 62 vegetation classes in the study
area. This data is in a raster format and so the data are organized using a square grid
comprising square grid cells that are each the same size. In our case, the raster data contains
multiple layers (also called “bands”) and each layer has corresponds to a spatial grid with
exactly the same area and has exactly the same dimensionality (i.e. number of rows, columns,
and cells). In this dataset, there are 62 different regular spatial grids layered on top of each
other – with each layer corresponding to a different vegetation class – and each of these
layers contains a grid with 343 rows, 320 columns, and 109760 cells. Within each layer, each
cell corresponds to a 1 by 1 km square. The values associated with each grid cell indicate
the (one) presence or (zero) absence of a given vegetation class in the cell.

Let’s explore the vegetation data.

print a short summary of the data
print(veg_data)

class : RasterStack
dimensions : 343, 320, 109760, 62 (nrow, ncol, ncell, nlayers)
resolution : 1000, 1000 (x, y)
extent : 1080496, 1400496, -4841217, -4498217 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
names : vegetation.1, vegetation.2, vegetation.3, vegetation.4, vegetation.5, vegetation.6, vegetation.7, vegetation.8, vegetation.9, vegetation.10, vegetation.11, vegetation.12, vegetation.13, vegetation.14, vegetation.15, ...
min values : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
max values : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

32 CHAPTER 4. DATA

plot a map of the 36th vegetation class
plot(veg_data[[36]])

1000000 1200000 1400000

−
48

00
00

0
−

46
50

00
0

−
45

00
00

0

0.0

0.2

0.4

0.6

0.8

1.0

plot an interactive map of the 36th vegetation class
mapview(veg_data[[36]])

print number of rows in the data
nrow(veg_data)

[1] 343

print number of columns in the data
ncol(veg_data)

[1] 320

4.3. VEGETATION DATA 33

print number of cells in the data
ncell(veg_data)

[1] 109760

print number of layers in the data
nlayers(veg_data)

[1] 62

print resolution on the x-axis
xres(veg_data)

[1] 1000

print resolution on the y-axis
yres(veg_data)

[1] 1000

print spatial extent of the grid, i.e. coordinates for corners
extent(veg_data)

class : Extent
xmin : 1080496
xmax : 1400496
ymin : -4841217
ymax : -4498217

print the coordinate reference system
print(veg_data@crs)

CRS arguments:
+proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0
+ellps=GRS80 +units=m +no_defs

print a summary of the first layer in the stack
print(veg_data[[1]])

class : RasterLayer
band : 1 (of 62 bands)

34 CHAPTER 4. DATA

dimensions : 343, 320, 109760 (nrow, ncol, ncell)
resolution : 1000, 1000 (x, y)
extent : 1080496, 1400496, -4841217, -4498217 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
source : /home/travis/build/prioritizr/PacMara_workshop/data/vegetation.tif
names : vegetation.1
values : 0, 1 (min, max)

print the value in the 800th cell in the first layer of the stack
print(veg_data[[1]][800])

##
0

print the value of the cell located in the 30th row and the 60th column of
the first layer
print(veg_data[[1]][30, 60])

##
0

calculate the sum of all the cell values in the first layer
cellStats(veg_data[[1]], "sum")

[1] 36

calculate the maximum value of all the cell values in the first layer
cellStats(veg_data[[1]], "max")

[1] 1

calculate the minimum value of all the cell values in the first layer
cellStats(veg_data[[1]], "min")

[1] 0

calculate the mean value of all the cell values in the first layer
cellStats(veg_data[[1]], "mean")

[1] 0.0003279883

4.3. VEGETATION DATA 35

calculate the maximum value in each layer
as_tibble(data.frame(max = cellStats(veg_data, "max")))

A tibble: 62 x 1
max
<dbl>
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
... with 52 more rows

Now, you can try and answer some questions about the vegetation data.

1. What part of the study area is the 51st vegetation class found in (hint: make a
map)?

2. What proportion of cells contain the 12th vegetation class?
3. Which vegetation class is present in the greatest number of cells?
4. The planning unit data and the vegetation data should have the same coordinate

reference system. Can you check if they are the same?

36 CHAPTER 4. DATA

Chapter 5

Spatial prioritizations

5.1 Introduction

Here we will develop prioritizations to identify priority areas for protected area establishment.
Its worth noting that prioritizr, Marxan, and Zonation are all decision support tools. This
means that they are designed to help you make decisions—they can’t make decisions for you.

5.2 Starting out simple

To start things off, let’s keep things simple. Let’s create a prioritization using the minimum
set formulation of the reserve selection problem. This formulation means that we want a
solution that will meet the targets for our biodiversity features for minimum cost. Here, we
will set 5% targets for each vegetation class and use the data in the cost column to specify
acquisition costs. Unlike Marxan, we do not have to calibrate species penalty factors (SPFs)
to ensure that our target are met—prioritizr should always return solutions to minimum
set problems where all the targets are met. Although we strongly recommend using Gurobi
to solve problems (with add_gurobi_solver), we will use the lpsymphony solver in this
workshop since it is easier to install. The Gurobi solver is much faster than the lpsymphony
solver (see here for installation instructions).

print planning unit data
print(pu_data)

class : SpatialPolygonsDataFrame
features : 1130
extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
variables : 5

37

https://prioritizr.net/
http://marxan.org/
https://www.helsinki.fi/en/researchgroups/digital-geography-lab/software-developed-in-cbig#section-52992
https://prioritizr.net/reference/add_min_set_objective.html
https://prioritizr.net/reference/add_min_set_objective.html
https://www.gurobi.com/
https://prioritizr.net/reference/add_gurobi_solver.html
https://prioritizr.net/reference/add_lsymphony_solver.html
https://prioritizr.net/articles/gurobi_installation.html

38 CHAPTER 5. SPATIAL PRIORITIZATIONS

names : id, cost, status, locked_in, locked_out
min values : 1, 0.192488262910798, 0, 0, 0
max values : 1130, 61.9272727272727, 2, 1, 1

make prioritization problem
p1 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.05) %>% # 5% representation targets
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE)

print problem
print(p1)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Minimum set objective
targets: Relative targets [targets (min: 0.05, max: 0.05)]
decisions: Binary decision
constraints: <none>
penalties: <none>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose (0)]

solve problem
s1 <- solve(p1)

print solution, the solution_1 column contains the solution values
indicating if a planning unit is (1) selected or (0) not
print(s1)

class : SpatialPolygonsDataFrame
features : 1130
extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
variables : 6
names : id, cost, status, locked_in, locked_out, solution_1
min values : 1, 0.192488262910798, 0, 0, 0, 0
max values : 1130, 61.9272727272727, 2, 1, 1, 1

5.3. ADDING COMPLEXITY 39

calculate number of planning units selected in the prioritization
sum(s1$solution_1)

[1] 36

calculate total cost of the prioritization
sum(s1$solution_1 * s1$cost)

[1] 806.2393

plot solution
spplot(s1, "solution_1", col.regions = c("white", "darkgreen"), main = "s1")

s1

0.0

0.2

0.4

0.6

0.8

1.0

Now let’s examine the solution.

1. How many planing units were selected in the prioritization? What proportion of
planning units were selected in the prioritization?

2. Is there a pattern in the spatial distribution of the priority areas?
3. Can you verify that all of the targets were met in the prioritization (hint:

feature_representation(p1, s1[, "solution_1"]))?

5.3 Adding complexity

Our first prioritization suffers many limitations, so let’s add additional constraints to the
problem to make it more useful. First, let’s lock in planing units that are already by covered

40 CHAPTER 5. SPATIAL PRIORITIZATIONS

protected areas. If some vegetation communities are already secured inside existing protected
areas, then we might not need to add as many new protected areas to the existing protected
area system to meet their targets. Since our planning unit data (pu_da) already contains
this information in the locked_in column, we can use this column name to specify which
planning units should be locked in.

make prioritization problem
p2 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.05) %>%
add_locked_in_constraints("locked_in") %>%
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE)

print problem
print(p2)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Minimum set objective
targets: Relative targets [targets (min: 0.05, max: 0.05)]
decisions: Binary decision
constraints: <Locked in planning units [257 locked units]>
penalties: <none>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose (0)]

solve problem
s2 <- solve(p2)

plot solution
spplot(s2, "solution_1", col.regions = c("white", "darkgreen"), main = "s2")

5.3. ADDING COMPLEXITY 41

s2

0.0

0.2

0.4

0.6

0.8

1.0

Let’s pretend that we talked to an expert on the vegetation communities in our study system
and they recommended that a 20% target was needed for each vegetation class. So, armed
with this information, let’s set the targets to 20%.

make prioritization problem
p3 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked_in") %>%
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE)

print problem
print(p3)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Minimum set objective
targets: Relative targets [targets (min: 0.2, max: 0.2)]
decisions: Binary decision
constraints: <Locked in planning units [257 locked units]>
penalties: <none>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose (0)]

42 CHAPTER 5. SPATIAL PRIORITIZATIONS

solve problem
s3 <- solve(p3)

plot solution
spplot(s3, "solution_1", col.regions = c("white", "darkgreen"), main = "s3")

s3

0.0

0.2

0.4

0.6

0.8

1.0

Next, let’s lock out highly degraded areas. Similar to before, this data is present in our
planning unit data so we can use the locked_out column name to achieve this.

make prioritization problem
p4 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked_in") %>%
add_locked_out_constraints("locked_out") %>%
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE)

print problem
print(p4)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Minimum set objective
targets: Relative targets [targets (min: 0.2, max: 0.2)]

5.3. ADDING COMPLEXITY 43

decisions: Binary decision
constraints: <Locked out planning units [132 locked units]
Locked in planning units [257 locked units]>
penalties: <none>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose (0)]

solve problem
s4 <- solve(p4)

plot solution
spplot(s4, "solution_1", col.regions = c("white", "darkgreen"), main = "s4")

s4

0.0

0.2

0.4

0.6

0.8

1.0

44 CHAPTER 5. SPATIAL PRIORITIZATIONS

Now, let’s compare the solutions.

1. What is the cost of the planning units selected in s2, s3, and s4?
2. How many planning units are in s2, s3, and s4?
3. Do the solutions with more planning units have a greater cost? Why or why not?
4. Why does the first solution (s1) cost less than the second solution with protected

areas locked into the solution (s2)?
5. Why does the third solution (s3) cost less than the fourth solution solution with

highly degraded areas locked out (s4)?
6. Since planning units covered by existing protected areas have already been pur-

chased, what is the cost for expanding the protected area system based on on the
fourth prioritization (s4) (hint: total cost minus the cost of locked in planning
units)?

7. What happens if you specify targets that exceed the total amount of vege-
tation in the study area and try to solve the problem? You can do this by
modifying the code to make p4 with add_absolute_targets(1000) instead of
add_relative_targets(0.2) and generating a new solution.

5.4 Penalizing fragmentation

Plans for protected area systems should facilitate gene flow and dispersal between individual
reserves in the system. However, the prioritizations we have made so far have been highly
fragmented. Similar to the Marxan decision support tool, we can add penalties to our
conservation planning problem to penalize fragmentation (i.e. total exposed boundary length)
and we also need to set a useful penalty value when adding such penalties (akin to Marxan’s
boundary length multiplier value; BLM). If we set our penalty value too low, then we will
end up with a solution that is identical to the solution with no added penalties. If we set
our penalty value too high, then prioritizr will take a long time to solve the problem and we
will end up with a solution that contains lots of extra planning units that are not needed
(since the penalty value is so high that minimizing fragmentation is more important than
cost). As a rule of thumb, we generally want penalty values between 0.00001 and 0.01 but
finding a useful penalty value requires calibration. The “correct” penalty value depends on
the size of the planning units, the main objective values (e.g. cost values), and the effect
of fragmentation on biodiversity persistence. Let’s create a new problem that is similar to
our previous problem (p4)—except that it contains boundary length penalties and a slightly
higher optimality gap to reduce runtime (default is 0.1)—and solve it. Since our planning
unit data is in a spatial format (i.e. vector or raster data), prioritizr can automatically
calculate the boundary data for us.

5.4. PENALIZING FRAGMENTATION 45

make prioritization problem
p5 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_min_set_objective() %>%
add_boundary_penalties(penalty = 0.0005) %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked_in") %>%
add_locked_out_constraints("locked_out") %>%
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE, gap = 1)

print problem
print(p5)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Minimum set objective
targets: Relative targets [targets (min: 0.2, max: 0.2)]
decisions: Binary decision
constraints: <Locked in planning units [257 locked units]
Locked out planning units [132 locked units]>
penalties: <Boundary penalties [edge factor (min: 0.5, max: 0.5), penalty (5e-04), zones]>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (1), time_limit (-1), verbose (0)]

solve problem,
note this will take around 30 seconds
s5 <- solve(p5)

print solution
print(s5)

class : SpatialPolygonsDataFrame
features : 1130
extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
variables : 6
names : id, cost, status, locked_in, locked_out, solution_1
min values : 1, 0.192488262910798, 0, 0, 0, 0
max values : 1130, 61.9272727272727, 2, 1, 1, 1

46 CHAPTER 5. SPATIAL PRIORITIZATIONS

plot solution
spplot(s5, "solution_1", col.regions = c("white", "darkgreen"), main = "s5")

s5

0.0

0.2

0.4

0.6

0.8

1.0

Now let’s compare the solutions to the problems with (s5) and without (s4) the boundary
length penalties.

1. What is the cost the fourth (s4) and fifth (s5) solutions? Why does the fifth
solution (s5) cost more than the fourth (s4) solution?

2. Try setting the penalty value to 0.000000001 (i.e. 1e-9) instead of 0.0005. What
is the cost of the solution now? Is it different from the fourth solution (s4) (hint:
try plotting the solutions to visualize them)? Is this is a useful penalty value?
Why?

3. Try setting the penalty value to 0.5. What is the cost of the solution now? Is it
different from the fourth solution (s4) (hint: try plotting the solutions to visualize
them)? Is this a useful penalty value? Why?

5.5. BUDGET LIMITED PRIORITIZATIONS 47

5.5 Budget limited prioritizations

In the real-world, the funding available for conservation is often very limited. As a conse-
quence, decision makers often need prioritizations where the total cost of priority areas does
not exceed a budget. In our fourth prioritization (s4), we found that we would need to spend
an additional $904 million AUD to ensure that each vegetation community is adequately rep-
resented in the protected area system. But what if the funds available for establishing new
protected areas were limited to $100 million AUD? In this case, we need a “budget limited
prioritization”. Budget limited prioritizations aim to maximize some measure of conservation
benefit subject to a budget (e.g. number of species with at least one occurrence in the pro-
tected area system, or phylogenetic diversity). Let’s create a prioritization by maximizing
the number of adequately represented features whilst keeping within a pre-specified budget.

funds for additional land acquisition (same units as cost data)
funds <- 100

calculate the total budget for the prioritization
budget <- funds + sum(s4$cost * s4$locked_in)
print(budget)

[1] 8575.56

make prioritization problem
p6 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_max_features_objective(budget) %>%
add_relative_targets(0.2) %>%
add_locked_in_constraints("locked_in") %>%
add_locked_out_constraints("locked_out") %>%
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE)

print problem
print(p6)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Maximum representation objective [budget (8575.56009869836)]
targets: Relative targets [targets (min: 0.2, max: 0.2)]
decisions: Binary decision
constraints: <Locked in planning units [257 locked units]
Locked out planning units [132 locked units]>

https://prioritizr.net/reference/add_max_cover_objective.html
https://prioritizr.net/reference/add_max_cover_objective.html
https://prioritizr.net/reference/add_max_phylo_div_objective.html

48 CHAPTER 5. SPATIAL PRIORITIZATIONS

penalties: <none>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose (0)]

solve problem
s6 <- solve(p6)

plot solution
spplot(s6, "solution_1", col.regions = c("white", "darkgreen"), main = "s6")

s6

0.0

0.2

0.4

0.6

0.8

1.0

calculate feature representation
r6 <- feature_representation(p6, s6[, "solution_1"])

calculate number of features with targets met
sum(r6$relative_held >= 0.2, na.rm = TRUE)

[1] 28

find out which features have their targets met when we add weights,
note that NA is for vegetation.61
print(r6$feature[r6$relative_held >= 0.2])

[1] "vegetation.1" "vegetation.2" "vegetation.3" "vegetation.4"
[5] "vegetation.5" "vegetation.6" "vegetation.7" "vegetation.8"
[9] "vegetation.11" "vegetation.12" "vegetation.13" "vegetation.14"
[13] "vegetation.15" "vegetation.17" "vegetation.25" "vegetation.28"
[17] "vegetation.29" "vegetation.30" "vegetation.32" "vegetation.33"
[21] "vegetation.34" "vegetation.35" "vegetation.36" "vegetation.37"

5.5. BUDGET LIMITED PRIORITIZATIONS 49

[25] "vegetation.38" "vegetation.39" "vegetation.40" "vegetation.45"
[29] NA

We can also add weights to specify that it is more important to meet the targets for certain
features and less important for other features. A common approach for weighting features is
to assign a greater importance to features with smaller spatial distributions. The rationale
behind this weighting method is that features with smaller spatial distributions are at greater
risk of extinction. So, let’s calculate some weights for our vegetation communities and see
how weighting the features changes our prioritization.

calculate weights as the log inverse number of grid cells that each vegetation
class occupies, rescaled between 1 and 100
wts <- 1 / cellStats(veg_data, "sum")
wts <- rescale(wts, to = c(1, 10))

print the name of the feature with smallest weight
names(veg_data)[which.min(wts)]

[1] "vegetation.20"

print the name of the feature with greatest weight
names(veg_data)[which.max(wts)]

[1] "vegetation.52"

plot histogram of weights
hist(wts, main = "feature weights")

feature weights

wts

F
re

qu
en

cy

2 4 6 8 10

0
10

20
30

40

50 CHAPTER 5. SPATIAL PRIORITIZATIONS

make prioritization problem with weights
p7 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_max_features_objective(budget) %>%
add_relative_targets(0.2) %>%
add_feature_weights(wts) %>%
add_locked_in_constraints("locked_in") %>%
add_locked_out_constraints("locked_out") %>%
add_binary_decisions() %>%
add_lpsymphony_solver(verbose = FALSE)

print problem
print(p7)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Maximum representation objective [budget (8575.56009869836)]
targets: Relative targets [targets (min: 0.2, max: 0.2)]
decisions: Binary decision
constraints: <Locked out planning units [132 locked units]
Locked in planning units [257 locked units]>
penalties: <Feature weights [weights (min: 1, max: 10)]>
portfolio: default
solver: Lpsymphony [first_feasible (0), gap (0.1), time_limit (-1), verbose (0)]

solve problem
s7 <- solve(p7)

plot solution
spplot(s7, "solution_1", col.regions = c("white", "darkgreen"), main = "s7")

5.5. BUDGET LIMITED PRIORITIZATIONS 51

s7

0.0

0.2

0.4

0.6

0.8

1.0

calculate feature representation
r7 <- feature_representation(p7, s7[, "solution_1"])

calculate number of features with targets met
sum(r7$relative_held >= 0.2, na.rm = TRUE)

[1] 26

find out which features have their targets met when we add weights,
note that NA is for vegetation.61
print(r7$feature[r7$relative_held >= 0.2])

[1] "vegetation.1" "vegetation.2" "vegetation.4" "vegetation.5"
[5] "vegetation.6" "vegetation.8" "vegetation.11" "vegetation.28"
[9] "vegetation.29" "vegetation.30" "vegetation.32" "vegetation.33"
[13] "vegetation.34" "vegetation.35" "vegetation.36" "vegetation.37"
[17] "vegetation.38" "vegetation.39" "vegetation.40" "vegetation.45"
[21] "vegetation.49" "vegetation.50" "vegetation.52" "vegetation.53"
[25] "vegetation.54" "vegetation.55" NA

1. What is the name of the feature with the smallest weight?
2. What is the cost of the sixth (s6) and seventh (s7) solutions?
3. Does there seem to be a big difference in which planning units were selected in

the sixth (s6) and seventh (s7) solutions?
4. Is there a difference between which features are adequately represented in the

sixth (s6) and seventh (s7) solutions? If so, what is the difference?

52 CHAPTER 5. SPATIAL PRIORITIZATIONS

5.6 Solution portfolios

In systematic conservation planning, only rarely do we have data on all of the stakeholder
preferences and biodiversity features that we are interested in conserving. As a consequence,
it is often useful to generate a portfolio of near optimal solutions to present to decision
makers to guide the reserve selection process. Generally we would want many solutions in
our portfolio (e.g. 1000) to ensure that our portfolio contains a range of spatially distinct
solutions, but here we will generate a portfolio containing just six near-optimal solutions so
the code doesn’t take too long to run. We will also increase the optimality gap to obtain
solutions that are more suboptimal than earlier (the default gap value is 0.1).

make problem with a shuffle portfolio
p8 <- problem(pu_data, veg_data, cost_column = "cost") %>%

add_max_features_objective(budget) %>%
add_relative_targets(0.2) %>%
add_feature_weights(wts) %>%
add_binary_decisions() %>%
add_shuffle_portfolio(number_solutions = 6,

remove_duplicates = FALSE) %>%
add_lpsymphony_solver(verbose = TRUE, gap = 10)

5.6. SOLUTION PORTFOLIOS 53

print problem
print(p8)

Conservation Problem
planning units: SpatialPolygonsDataFrame (1130 units)
cost: min: 0.19249, max: 61.92727
features: vegetation.1, vegetation.2, vegetation.3, ... (62 features)
objective: Maximum representation objective [budget (8575.56009869836)]
targets: Relative targets [targets (min: 0.2, max: 0.2)]
decisions: Binary decision
constraints: <none>
penalties: <Feature weights [weights (min: 1, max: 10)]>
portfolio: Shuffle portfolio [number_solutions (6), remove_duplicates (0), threads (1)]
solver: Lpsymphony [first_feasible (0), gap (10), time_limit (-1), verbose (1)]

solve problem
note that this will contain six solutions since we added a portfolio
s8 <- solve(p8)

print solution
print(s8)

class : SpatialPolygonsDataFrame
features : 1130
extent : 1080623, 1399989, -4840595, -4497092 (xmin, xmax, ymin, ymax)
crs : +proj=aea +lat_1=-18 +lat_2=-36 +lat_0=0 +lon_0=132 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs
variables : 11
names : id, cost, status, locked_in, locked_out, solution_1, solution_2, solution_3, solution_4, solution_5, solution_6
min values : 1, 0.192488262910798, 0, 0, 0, 0, 0, 0, 0, 0, 0
max values : 1130, 61.9272727272727, 2, 1, 1, 1, 1, 1, 1, 1, 1

calculate the cost of the first solution
sum(s8$solution_1 * s8$cost)

[1] 2169.162

calculate the cost of the second solution
sum(s8$solution_2 * s8$cost)

[1] 2127.815

54 CHAPTER 5. SPATIAL PRIORITIZATIONS

calculate the proportion of planning units with the same solution values
in the first and second solutions
mean(s8$solution_1 == s8$solution_2)

[1] 0.9566372

plot first solution
spplot(s8, "solution_1", col.regions = c("white", "darkgreen"),

main = "s8 (solution 1)")

s8 (solution 1)

0.0

0.2

0.4

0.6

0.8

1.0

5.6. SOLUTION PORTFOLIOS 55

plot all solutions
s8_plots <- lapply(paste0("solution_", seq_len(6)), function(x) {
spplot(s8, x, main = x, col.regions = c("white", "darkgreen"))

})
do.call(grid.arrange, append(s8_plots, list(ncol = 3)))

solution_1

0.0

0.2

0.4

0.6

0.8

1.0

solution_2

0.0

0.2

0.4

0.6

0.8

1.0

solution_3

0.0

0.2

0.4

0.6

0.8

1.0

solution_4

0.0

0.2

0.4

0.6

0.8

1.0

solution_5

0.0

0.2

0.4

0.6

0.8

1.0

solution_6

0.0

0.2

0.4

0.6

0.8

1.0

1. What is the cost of each of the six solutions in portfolio? Are their costs very
different?

2. Are the solutions in the portfolio very different?
3. What could we do to obtain a portfolio with more different solutions?

56 CHAPTER 5. SPATIAL PRIORITIZATIONS

Chapter 6

Answers

This chapter contains the answers to the questions presented in the earlier chapters. The
answers are provided here so you can check if your answers are correct.

6.1 Redo Marxan analysis

6.1.1 Base analysis on input.dat

1. Subjective.
2. I would say, the most obvious differences are in the bottom left corner, where the

Marxan results are rather diffuse and selection frequencies are low. This is actually
a very good example of some ‘issues’ people have described with prioritizr. Its
essentially related to a problem not having enough feature and cost heterogeneity
for a decision support tool such as Marxan or prioritzr to find reasonable solutions.

3. Heterogenous cost structures help. So do features that are more complex or have
more overlap with each other.

6.2 Data

6.2.1 Planning unit data

1. nrow(pu_data)
2. max(pu_data$cost)
3. sum(pu_data$locked_in)
4. mean(pu_data$locked_in)

57

58 CHAPTER 6. ANSWERS

5. sum(pu_data$locked_out)
6. mean(pu_data$locked_out)
7. assert_that(min(c(pu_data$locked_in, pu_data$locked_out)) == 0)

assert_that(max(c(pu_data$locked_in, pu_data$locked_out)) == 1)
8. all(is.finite(pu_data$cost))
9. assert_that(sum(duplicated(pu_data$id)) == 0)

10. Yes, the eastern side of Tasmania is generally much cheaper than the western
side.

11. Yes, most planning units covered by protected areas are located in the south-
western side of Tasmania.

6.3. SPATIAL PRIORITIZATIONS 59

6.2.2 Vegetation data

1. Central-north Tasmania
2. cellStats(veg_data[[12]], "mean")
3. names(veg_data)[which.max(cellStats(veg_data, "sum"))]
4. Yes, they are the same.

6.3 Spatial prioritizations

6.3.1 Starting out simple

1. sum(s1$solution_1)
mean(s1$solution_1)

2. Yes, the planning units are generally spread out across most of the study area
and they are not biased towards specific areas.

3. all(feature_representation(p1, s1[, "solution_1"])$relative_held
>= 0.2)

6.3.2 Adding complexity

1. sum(s2$cost * s2$solution_1)
sum(s3$cost * s3$solution_1)
sum(s4$cost * s4$solution_1)

2. sum(s2$solution_1)
sum(s3$solution_1)
sum(s4$solution_1)

3. No, just because a solution a solution has more planning units does not mean
that it will cost less.

4. This is because the planning units covered by existing protected areas have a
non-zero cost and locking in these planning units introduces inefficiencies into the
solution. This is very common in real-world conservation prioritizations because
existing protected areas are often in places that do little to benefit biodiversity
[Fuller et al., 2010].

5. This is because some of the planning units that are highly degraded—based on just
the planning unit costs and vegetation data—provide cost-efficient opportunities
for meeting the targets and excluding them from the reserve selection process
means that other more costly planning units are needed to meet the targets.

60 CHAPTER 6. ANSWERS

6. sum(s4$cost * s4$solution_1) - sum(s4$cost * s4$locked_in)
7. We get an error message stating the the problem is infeasible because there is no

valid solution—even if we selected all the planning units the study area we would
still not meet the targets.

6.3.3 Penalizing fragmentation

1. The cost of the fourth solution is sum(s4$solution_1 * s4$cost) and the cost
of the fifth solution is sum(s5$solution_1 * s5$cost). The fifth solution (s5)
costs more than the fourth solution (s4) because we have added penalties to the
conservation planning problem to indicate that we are willing to accept a slightly
more costly solution if it means that we can reduce fragmentation.

2. The solution is now nearly identical to the fourth solution (s4) and so has nearly
the same cost. This penalty value is too low and is not useful because it does not
reduce the fragmentation in our solution.

3. The solution now contains a lot of extra planning units that are not needed to
meet our targets. In fact, nearly every planning unit in the study is now selected.
This penalty value is too high and is not useful.

6.3.4 Budget limited prioritizations

1. names(veg_data)[which.min(wts)]
2. sum(s6$cost * s6$solution_1)

sum(s7$cost * s7$solution_1)
3. No, the sixth (s6) and seventh (s7) solutions both share many of the same selected

planning units and there does not appear to be an obvious difference in the spatial
location of the planning units which they do not share.

4. Yes. Both solutions contain adequately represent these features:
r6$feature[r6$relative_held > 0.2 & r7$relative_held > 0.2]
The sixth (s6) is adequately represents these features too:
r6$feature[r6$relative_held > 0.2 & !r7$relative_held > 0.2]
The seventh (s7) is adequately represents these features too:
r7$feature[r7$relative_held > 0.2 & !r6$relative_held > 0.2]

6.3. SPATIAL PRIORITIZATIONS 61

6.3.5 Solution portfolios

1. No the cost are very similar.
sum(s8$solution_1 * s8$cost)
sum(s8$solution_2 * s8$cost)
sum(s8$solution_3 * s8$cost)
sum(s8$solution_4 * s8$cost)
sum(s8$solution_5 * s8$cost)
sum(s8$solution_6 * s8$cost)

2. No the status of the planning units are very similar in the all of the solutions in
the portfolio.
mean((s8$solution_1 == s8$solution_2) & (s8$solution_1 == s8$solution_3)
& (s8$solution_1 == s8$solution_4) & (s8$solution_1 == s8$solution_5)
& (s8$solution_1 == s8$solution_6))

3. We should increase the number of the solutions in the portfolio.

62 CHAPTER 6. ANSWERS

Chapter 7

Acknowledgements

Many thanks to Icons8 for providing the icons used in this manual and to Yihui Xie for
developing the bookdown R package that underpins this manual. We also thank Garrett
Grolemund and Hadley Wickham for creating one of the Rstudio screenshots used in this
manual that was originally a part of their R for Data Science book.

63

https://icons8.com
http://bookdown.org

64 CHAPTER 7. ACKNOWLEDGEMENTS

Chapter 8

Session information

print session information
sessionInfo()

R version 3.6.1 (2017-01-27)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS
##
Matrix products: default
BLAS: /home/travis/R-bin/lib/R/lib/libRblas.so
LAPACK: /home/travis/R-bin/lib/R/lib/libRlapack.so
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] readxl_1.3.1 data.table_1.12.6 gridExtra_2.3 assertthat_0.2.1
[5] scales_1.0.0 units_0.6-5 mapview_2.7.0 rgeos_0.5-2
[9] rgdal_1.4-7 prioritizr_4.1.4.2 proto_1.0.0 raster_3.0-7
[13] sp_1.3-2 forcats_0.4.0 stringr_1.4.0 dplyr_0.8.3
[17] purrr_0.3.3 readr_1.3.1 tidyr_1.0.0 tibble_2.1.3
[21] ggplot2_3.2.1 tidyverse_1.2.1

65

66 CHAPTER 8. SESSION INFORMATION

##
loaded via a namespace (and not attached):
[1] nlme_3.1-140 sf_0.8-0 satellite_1.0.1 lubridate_1.7.4
[5] webshot_0.5.1 httr_1.4.1 tools_3.6.1 backports_1.1.5
[9] utf8_1.1.4 R6_2.4.1 KernSmooth_2.23-15 DBI_1.0.0
[13] lazyeval_0.2.2 colorspace_1.4-1 withr_2.1.2 tidyselect_0.2.5
[17] leaflet_2.0.2 compiler_3.6.1 cli_1.1.0 rvest_0.3.5
[21] xml2_1.2.2 bookdown_0.15.1 classInt_0.4-2 digest_0.6.22
[25] rmarkdown_1.17 base64enc_0.1-3 pkgconfig_2.0.3 htmltools_0.4.0
[29] lpsymphony_1.12.0 fastmap_1.0.1 htmlwidgets_1.5.1 rlang_0.4.1
[33] rstudioapi_0.10 shiny_1.4.0 generics_0.0.2 jsonlite_1.6
[37] crosstalk_1.0.0 Rsymphony_0.1-28 magrittr_1.5 Matrix_1.2-17
[41] fansi_0.4.0 Rcpp_1.0.3 munsell_0.5.0 lifecycle_0.1.0
[45] stringi_1.4.3 yaml_2.2.0 plyr_1.8.4 grid_3.6.1
[49] parallel_3.6.1 promises_1.1.0 crayon_1.3.4 lattice_0.20-38
[53] haven_2.2.0 hms_0.5.2 zeallot_0.1.0 knitr_1.26
[57] pillar_1.4.2 uuid_0.1-2 velox_0.2.0 codetools_0.2-16
[61] stats4_3.6.1 glue_1.3.1 evaluate_0.14 modelr_0.1.5
[65] png_0.1-7 vctrs_0.2.0 httpuv_1.5.2 cellranger_1.1.0
[69] gtable_0.3.0 xfun_0.11 mime_0.7 xtable_1.8-4
[73] broom_0.5.2 e1071_1.7-2 later_1.0.0 class_7.3-15
[77] viridisLite_0.3.0

Chapter 9

References

67

68 CHAPTER 9. REFERENCES

Bibliography

Richard A Fuller, Eve McDonald-Madden, Kerrie A Wilson, Josie Carwardine, Hedley S
Grantham, James EM Watson, Carissa J Klein, David C Green, and Hugh P Possingham.
Replacing underperforming protected areas achieves better conservation outcomes. Nature,
466(7304):365, 2010.

69

	Welcome!
	Introduction
	Redo Marxan analysis
	Data
	Spatial prioritizations
	Answers
	Acknowledgements
	Session information
	References

